基于深度残差变分自编码器的故障诊断方法和诊断系统

    公开(公告)号:CN114912480B

    公开(公告)日:2025-04-11

    申请号:CN202210359430.7

    申请日:2022-04-07

    Abstract: 本发明公开了一种基于深度残差变分自编码器的故障诊断方法和诊断系统,所述诊断方法包括如下步骤:S10:获取机械设备在不同故障下的振动加速度信号X;S20:将所采集到的振动加速度信号X通过小波包分解并重构,获得小波包重构信号作为特征样本集,将所述特征样本集按一定比例随机划分为训练集和测试集;S30:通过将残差自编码模块和变分自编码器模块进行前后堆叠连接,构建形成深度残差变分自编码器网络模型;S40:将训练集输入到所述深度残差变分自编码器网络模型中进行依次训练,获得具有故障判别能力的深度网络模型;S50:将测试集输入至已训练好的深度网络模型中,自动识别机械故障的类型。

    一种基于强鲁棒性多尺度网络的机械故障诊断方法和系统

    公开(公告)号:CN116484172B

    公开(公告)日:2024-01-30

    申请号:CN202310063113.5

    申请日:2023-01-19

    Abstract: 本发明公开了一种基于强鲁棒性多尺度网络的机械故障诊断方法和系统,故障诊断方法包括如下步骤:获取机械设备不同健康状态下的原始振动信号;对原始振动信号进行归一化处理,并将归一化后的数据以相同的采样点数划分出训练集和测试集;构建一个由依次串接的卷积池化模块、多尺度模块和特征识别模块组成的强鲁棒性多尺度网络模型;将训练集输入到强鲁棒性多尺度网络模型中训练,并采用QHAdam优化器优化强鲁棒性多尺度网络模型;将测试集输入到训练好的强鲁棒性多尺度网络模型中进行故障诊断。该方法能够有效的提高故障诊断的精度,充分利用振动信号多尺度的性质,尤其在样本量不平衡和强噪声干扰情况下也能高效地提取故障

    基于多信息融合深度集成网络的故障诊断方法和系统

    公开(公告)号:CN117540202A

    公开(公告)日:2024-02-09

    申请号:CN202311178807.X

    申请日:2023-09-13

    Abstract: 根据本发明公开了一种基于多信息融合深度集成网络的故障诊断方法和系统,故障诊断方法包括如下步骤:利用多个传感器采集被测零件不同健康状态下的振动信号;将多个传感器采集到的振动信号以相同大小的窗长切分出多个样本形成样本集,并将该样本集按照比例划分出训练集和测试集;构建一个由依次串接的基于复合指标的加权融合策略模块、跨尺度注意特征提取模块和权重拓扑学习模块的多信息融合深度集成网络模型;将训练集输入到所述多信息融合深度集成网络模型中训练;将测试集输入到已经训练好参数的多信息融合深度集成网络模型中进行健康状态判别。

    一种基于强鲁棒性多尺度网络的机械故障诊断方法和系统

    公开(公告)号:CN116484172A

    公开(公告)日:2023-07-25

    申请号:CN202310063113.5

    申请日:2023-01-19

    Abstract: 本发明公开了一种基于强鲁棒性多尺度网络的机械故障诊断方法和系统,故障诊断方法包括如下步骤:获取机械设备不同健康状态下的原始振动信号;对原始振动信号进行归一化处理,并将归一化后的数据以相同的采样点数划分出训练集和测试集;构建一个由依次串接的卷积池化模块、多尺度模块和特征识别模块组成的强鲁棒性多尺度网络模型;将训练集输入到强鲁棒性多尺度网络模型中训练,并采用QHAdam优化器优化强鲁棒性多尺度网络模型;将测试集输入到训练好的强鲁棒性多尺度网络模型中进行故障诊断。该方法能够有效的提高故障诊断的精度,充分利用振动信号多尺度的性质,尤其在样本量不平衡和强噪声干扰情况下也能高效地提取故障特征,实现不同故障状态的智能诊断。

    基于深度残差变分自编码器的故障诊断方法和诊断系统

    公开(公告)号:CN114912480A

    公开(公告)日:2022-08-16

    申请号:CN202210359430.7

    申请日:2022-04-07

    Abstract: 本发明公开了一种基于深度残差变分自编码器的故障诊断方法和诊断系统,所述诊断方法包括如下步骤:S10:获取机械设备在不同故障下的振动加速度信号X;S20:将所采集到的振动加速度信号X通过小波包分解并重构,获得小波包重构信号作为特征样本集,将所述特征样本集按一定比例随机划分为训练集和测试集;S30:通过将残差自编码模块和变分自编码器模块进行前后堆叠连接,构建形成深度残差变分自编码器网络模型;S40:将训练集输入到所述深度残差变分自编码器网络模型中进行依次训练,获得具有故障判别能力的深度网络模型;S50:将测试集输入至已训练好的深度网络模型中,自动识别机械故障的类型。

    基于多信息融合深度集成网络的故障诊断方法和系统

    公开(公告)号:CN117540202B

    公开(公告)日:2024-05-14

    申请号:CN202311178807.X

    申请日:2023-09-13

    Abstract: 根据本发明公开了一种基于多信息融合深度集成网络的故障诊断方法和系统,故障诊断方法包括如下步骤:利用多个传感器采集被测零件不同健康状态下的振动信号;将多个传感器采集到的振动信号以相同大小的窗长切分出多个样本形成样本集,并将该样本集按照比例划分出训练集和测试集;构建一个由依次串接的基于复合指标的加权融合策略模块、跨尺度注意特征提取模块和权重拓扑学习模块的多信息融合深度集成网络模型;将训练集输入到所述多信息融合深度集成网络模型中训练;将测试集输入到已经训练好参数的多信息融合深度集成网络模型中进行健康状态判别。

    基于增强型卷积神经网络的机械故障诊断方法和诊断系统

    公开(公告)号:CN115017945A

    公开(公告)日:2022-09-06

    申请号:CN202210567779.X

    申请日:2022-05-24

    Abstract: 本发明公开了一种基于增强型卷积神经网络的机械故障诊断方法和诊断系统,诊断方法包括如下步骤:采集机械设备不同故障类型的原始振动信号;对原始振动信号进行降噪处理,并将处理完的数据按照一定比例随机划分为训练集、验证集和测试集;搭建一个由特征提取模块、特征加权模块和特征分类模块三部分依次串接组成的增强型卷积神经网络模型;将训练集和验证集输入到搭建的增强型卷积神经网络模型中进行训练,采用早停法判断是否满足早停准则,如果满足,则提前结束训练;否则,更新权重和偏置参数继续输入增强型卷积神经网络模型中训练;将测试集输入到训练好的增强型卷积神经网络模型中进行测试,实现故障类型的自动识别。

Patent Agency Ranking