人脸表情特征提取方法

    公开(公告)号:CN104778472A

    公开(公告)日:2015-07-15

    申请号:CN201510202840.0

    申请日:2015-04-24

    Inventor: 童莹 陈晨 焦良葆

    Abstract: 本发明提供一种人脸表情特征提取方法,将人脸表情图像分为N个块图像,每个子图像的大小为m×n;由局部加权二值模式即LWBP分别计算出每个块图像中所有像素的LWBP1和LWBP2编码值;分别统计每个块图像的LWBP直方图;将块图像的两个直方图直接叠加得到直方图作为最终的块图像LWBP特征;将所有块图像的统计直方图顺序连接起来,得到用于分类识别的整个图像的LWBP特征向量。通过分别计算两组对称的共八个模板的加权灰度值,比较各个方向加权值与平均加权值的大小并进行编码,它综合考虑了不同方向上邻域像素的灰度变化,能够有效表征人脸表情细节特征,且对噪声有一定的鲁棒性,且识别速度明显加快,具有实用性。

    人脸表情特征提取方法

    公开(公告)号:CN104778472B

    公开(公告)日:2017-11-21

    申请号:CN201510202840.0

    申请日:2015-04-24

    Inventor: 童莹 陈晨 焦良葆

    Abstract: 本发明提供一种人脸表情特征提取方法,将人脸表情图像分为N个块图像,每个子图像的大小为m×n;由局部加权二值模式即LWBP分别计算出每个块图像中所有像素的LWBP1和LWBP2编码值;分别统计每个块图像的LWBP直方图;将块图像的两个直方图直接叠加得到直方图作为最终的块图像LWBP特征;将所有块图像的统计直方图顺序连接起来,得到用于分类识别的整个图像的LWBP特征向量。通过分别计算两组对称的共八个模板的加权灰度值,比较各个方向加权值与平均加权值的大小并进行编码,它综合考虑了不同方向上邻域像素的灰度变化,能够有效表征人脸表情细节特征,且对噪声有一定的鲁棒性,且识别速度明显加快,具有实用性。

Patent Agency Ranking