-
公开(公告)号:CN111523463B
公开(公告)日:2023-05-23
申请号:CN202010324781.5
申请日:2020-04-22
Applicant: 南京工程学院
IPC: G06V20/40 , G06V10/75 , G06V10/44 , G06V10/30 , G06V10/82 , G06N3/0464 , G06N3/0442 , G06N3/049 , G06N3/082
Abstract: 本发明公开了一种基于匹配‑回归网络的目标跟踪方法及训练方法,应用于图像处理技术领域,输入包括若干帧的目标待跟踪序列,对每一帧图像在目标搜索区域内进行目标跟踪;根据中心匹配网络输出目标中心位置,根据已确定的目标中心位置获取中心匹配网络最后一个卷积层输出的特征图,将所述特征图作为边界回归网络的输入;边界回归网络根据输入特征图,根据所述目标中心进行中心点发散,确定目标中心的边界位置,输出锚框的高度和宽度。本发明利用孪生网络确定目标中心位置,在边界回归网络中利用两层LSTM网络结合历史帧的时序特征信息,输出更精确的宽高比可变的锚框,提高视频序列中目标跟踪的准确性和鲁棒性。
-
公开(公告)号:CN111523463A
公开(公告)日:2020-08-11
申请号:CN202010324781.5
申请日:2020-04-22
Applicant: 南京工程学院
Abstract: 本发明公开了一种基于匹配‑回归网络的目标跟踪方法及训练方法,应用于图像处理技术领域,输入包括若干帧的目标待跟踪序列,对每一帧图像在目标搜索区域内进行目标跟踪;根据中心匹配网络输出目标中心位置,根据已确定的目标中心位置获取中心匹配网络最后一个卷积层输出的特征图,将所述特征图作为边界回归网络的输入;边界回归网络根据输入特征图,根据所述目标中心进行中心点发散,确定目标中心的边界位置,输出锚框的高度和宽度。本发明利用孪生网络确定目标中心位置,在边界回归网络中利用两层LSTM网络结合历史帧的时序特征信息,输出更精确的宽高比可变的锚框,提高视频序列中目标跟踪的准确性和鲁棒性。
-