一种基于深度学习SRNN网络的光伏发电功率预测方法

    公开(公告)号:CN115545964A

    公开(公告)日:2022-12-30

    申请号:CN202110734048.5

    申请日:2021-06-30

    Abstract: 本发明提供了一种基于深度学习SRNN网络的光伏发电功率预测方法,步骤一:选取历史光伏发电功率数据和相应的历史气象数据;步骤二:使用因子分析法进行相关性分析,筛选出对发电功率影响较大的气象指标;步骤三:数据预处理;步骤四:搭建基于深度学习SRNN网络的光伏发电功率预测模型;步骤五:设置输入层、隐藏层和输出层参数,确定GRU层容量和全连接层容量;步骤六:将预测出的光伏发电功率数据与实际负荷数据进行对比,选用相对误差和均方根误差指标对预测数据进行评价。本发明提供的基于深度学习SRNN网络的光伏发电功率预测方法对RNN进行切片而记忆单元不变,使得能够并行运行RNN网络,使得网络训练速度飞跃,而且提升了系统运行的可靠性和稳定性。

Patent Agency Ranking