一种改进的多通道语音增强系统和方法

    公开(公告)号:CN111583948A

    公开(公告)日:2020-08-25

    申请号:CN202010385976.0

    申请日:2020-05-09

    Abstract: 本发明公开了一种改进的多通道语音增强系统和方法,将采集的多麦信号输入训练的自适应波束形成网络生成单通道信号;将生成的单通道信号通过共享网络进行信息转换;将转换后的信号输入多目标学习网络的主任务网络得到增强后的语音信号;将转换后的信号输入多目标学习网络的子任务网络得到表征语音信息的特征。本发明避免了声源定位算法,并可以有效的抑制非平稳噪声。本发明在神经网络中加入了LSTM层,能够在一定程度上缓解梯度消失和梯度爆炸问题,减少训练结果不收敛的情况,从而改善语音增强的效果。同时,由于引入多任务学习策略,增加了算法的鲁棒性,提升了算法性能,具有良好的应用前景。

    一种改进的多通道语音增强系统和方法

    公开(公告)号:CN111583948B

    公开(公告)日:2022-09-27

    申请号:CN202010385976.0

    申请日:2020-05-09

    Abstract: 本发明公开了一种改进的多通道语音增强系统和方法,将采集的多麦信号输入训练的自适应波束形成网络生成单通道信号;将生成的单通道信号通过共享网络进行信息转换;将转换后的信号输入多目标学习网络的主任务网络得到增强后的语音信号;将转换后的信号输入多目标学习网络的子任务网络得到表征语音信息的特征。本发明避免了声源定位算法,并可以有效的抑制非平稳噪声。本发明在神经网络中加入了LSTM层,能够在一定程度上缓解梯度消失和梯度爆炸问题,减少训练结果不收敛的情况,从而改善语音增强的效果。同时,由于引入多任务学习策略,增加了算法的鲁棒性,提升了算法性能,具有良好的应用前景。

    一种基于长短时记忆网络快速识别语音情感类别的方法

    公开(公告)号:CN113053418A

    公开(公告)日:2021-06-29

    申请号:CN202110485958.4

    申请日:2021-04-30

    Abstract: 本发明公开了一种基于长短时记忆网络快速识别语音情感类别的方法,包括如下步骤:从原始语音数据样本中提取具有时序信息的帧级语音特征;通过软注意力模型创建基于注意力机制的改进型LSTM模型;用已知的原始语音数据样本及其语音情感类别对改进型LSTM模型进行训练得到情感类别识别模型;对情感类别识别模型进行情感识别测试验证;将未知的原始语音数据样本输入情感类别识别模型进行识别,输出对应的语音情感类别;本发明通过注意力机制优化常规型LSTM模型得到改进型LSTM模型,在保证性能的前提下,有效减少了矩阵计算量,提高语音情感类别识别的性能,具有良好的应用前景。

Patent Agency Ranking