一种基于联邦学习的软件缺陷预测隐私保护方法

    公开(公告)号:CN115309647A

    公开(公告)日:2022-11-08

    申请号:CN202210959874.4

    申请日:2022-08-11

    Abstract: 本发明涉及一种基于联邦学习的软件缺陷预测隐私保护方法,基于决策树构建的随机森林模型进行软件缺陷预测,解决了依赖集中存储企业私有数据进行模型训练的隐私泄露问题。首先,构建软件缺陷预测模型,分解成对数据集进行预处理,采用Bootstrap采样策略为每个决策树创建训练集和基于这些决策树组成随机森林模型部分;其次,利用构建的模型在内部各个部门上进行预测和训练,计算损失和局部梯度;然后,对局部梯度进行梯度剪裁并加入本地差分隐私技术,得到受保护的梯度,上传服务器;最后,由服务器聚合梯度,更新全局模型参数并分发给各个部门。本发明以一种隐私保护的方式,利用大量数据进行模型训练,训练出准确无偏的软件缺陷预测模型。

Patent Agency Ranking