深度时序N-SEIR传染病预测模型

    公开(公告)号:CN113223731A

    公开(公告)日:2021-08-06

    申请号:CN202110487652.2

    申请日:2021-04-30

    Abstract: 本发明公开了基于传统SEIR模型的深度时序N‑SEIR传染病预测模型,用于对COVID‑19传染病时序建模,从而进行更加准确有效的分析预测。包括:步骤1:采用极大似然估计法对平均潜伏期进行估计;步骤2:利用已有数据输入改进的N‑SEIR模型,对当前时刻进行建模;步骤3:建立时序N‑SEIR模型,并估算基本再生数。本发明能够对传染病的平均潜伏期进行估计,得到合理的COVID‑19传染病平均潜伏期。与已有的SIER传染病动力学模型相比,我们设计的N‑SIER传染病模型考虑到了被隔离人群,从而建立更精确的预测模型。此外,我们改进了N‑SIER模型,建立了基于时序的深度N‑SIER预测模型,从而对时序的样本数据有更好的模拟能力。

Patent Agency Ranking