-
公开(公告)号:CN110504360A
公开(公告)日:2019-11-26
申请号:CN201810472438.8
申请日:2018-05-17
Applicant: 南京大学昆山创新研究院
Abstract: 本发明公开了一种大面积钙钛矿太阳能电池及其制备方法,包括:透明基底,N区互联层、钙钛矿层和P区全覆盖多孔导电层;所述N区互联层沉积覆盖于所述透明基底;所述钙钛矿层为磁性钙钛矿前驱液通过高精度涂布仪的涂布方式和磁场的磁性吸附作用共同使其互相链接且均匀分布于所述P区全覆盖多孔导电层内部的下方且与所述N区互联层接触的互联结构;该发明以整面大面积制备N区互联层包括互联导电层,不需后处理,制备工艺简单,大幅减少制备步骤降低制备难度与制备成本,大面积印刷、快速低成本制备。
-
公开(公告)号:CN106784339A
公开(公告)日:2017-05-31
申请号:CN201611253939.4
申请日:2016-12-30
Applicant: 南京大学昆山创新研究院
CPC classification number: Y02E10/549 , H01L51/441 , H01L51/0003 , H01L51/0043
Abstract: 本发明公开了一种钙钛矿太阳能电池及其制备方法,从下至上依次包括导电衬底、空穴传输层、钙钛矿层、电子传输层、阴极修饰层和金属阴极,所述阴极修饰层包括侧链含有至少两个羟基的共轭聚合物;所述共轭聚合物包括共轭主链,所述共轭主链包括相连的A共轭单元和B共轭单元,所述A共轭单元和B共轭单元均包括芴、硫芴、硫茚、BT、DBT或苯基,所述A共轭单元和B共轭单元连接不同的侧链,其中一个侧链含有2~6个羟基。本发明提供的一种钙钛矿太阳能电池及其制备方法,利用极性基团达到界面偶极修饰作用,降低金属阴极与电子传输层间势垒,减轻界面复合作用,提升钙钛矿电池性能。
-
公开(公告)号:CN106630650A
公开(公告)日:2017-05-10
申请号:CN201611214904.X
申请日:2016-12-26
Applicant: 南京大学昆山创新研究院
CPC classification number: Y02E10/542 , C03C12/00 , C03C8/24 , H01G9/08 , H01G9/20
Abstract: 本发明公开了一种无铅玻璃粉、无铅玻璃粉浆料、大面积染料敏化太阳能电池及其制备方法和应用,无铅玻璃粉,包括以下组分:SiO2 10~20%、B2O3 5~15%、Bi2O3 40~70%、ZnO 1~10%、Ai2O3 1~10%、Na2O 0.5~5%、BaO 1~5%和CaO 2~7%。无铅玻璃粉浆料,包括以下组分:所述无铅玻璃粉70~80%、有机载体15~25%和添加剂1~5%。本发明形成的致密玻璃体耐腐蚀保护层,可提高导电银栅的耐腐蚀性,并且通过FTO导电玻璃四周的玻璃粉体将光阳极和对电极封接起来,通过整面印刷的方式,减少了孔洞的数量,简化封装工艺,可减慢电解液的泄漏,提高电池的寿命。
-
公开(公告)号:CN103794377A
公开(公告)日:2014-05-14
申请号:CN201410057955.0
申请日:2014-02-21
Applicant: 南京大学昆山创新研究院
IPC: H01G9/20
CPC classification number: Y02E10/542
Abstract: 本发明公开了一种染料敏化太阳能电池光阳极,为5层叠层结构,依次为导电基体、第一致密层、传输层、第二致密层、散射层。本发明料敏化太阳能电池光阳极采用了五层层叠结构,在导电基体和传输层间设有致密层,有效的抑制了导电基体上产生的电子与电解液之间所形成的暗电流,进而达到提高DSSC电池的光电转换效率的目的。本发明还在多孔膜外设置了一层散射层,通过大颗粒的光散射作用增加光程和对太阳光可以二次吸收,从而增加光的再次利用效率,提高DSSC的光电转换效率约20%左右。
-
公开(公告)号:CN103794376A
公开(公告)日:2014-05-14
申请号:CN201410057940.4
申请日:2014-02-21
Applicant: 南京大学昆山创新研究院
CPC classification number: Y02E10/542
Abstract: 本发明公开了一种用于染料敏化太阳能电池光阳极上光散射层浆料,其组分为TiO2颗粒、乙基纤维素和松油醇,且TiO2颗粒:乙基纤维素:松油醇的重量配比为1∶0.2~0.5∶2~8,其中,所述TiO2颗粒为由10~30nm的TiO2纳米颗粒和0.2~0.4μm的TiO2颗粒按照1:1~5的重量比的混合。本发明DSSC光阳极散射层浆料采用锐钛矿结构的大颗粒与小颗粒TiO2按照一定比例混合而成,其中小颗粒10nm~30nm的TiO2在其中具有过渡作用,促进了传递层与散射层之间的结合,防止光阳极在高温烧结后的龟裂现象发生,同时增加了光程提高电池效率。
-
公开(公告)号:CN103794377B
公开(公告)日:2017-01-25
申请号:CN201410057955.0
申请日:2014-02-21
Applicant: 南京大学昆山创新研究院
IPC: H01G9/20
CPC classification number: Y02E10/542
Abstract: 本发明公开了一种染料敏化太阳能电池光阳极,为5层叠层结构,依次为导电基体、第一致密层、传输层、第二致密层、散射层。本发明料敏化太阳能电池光阳极采用了五层层叠结构,在导电基体和传输层间设有致密层,有效的抑制了导电基体上产生的电子与电解液之间所形成的暗电流,进而达到提高DSSC电池的光电转换效率的目的。本发明还在多孔膜外设置了一层散射层,通过大颗粒的光散射作用增加光程和对太阳光可以二次吸收,从而增加光的再次利用效率,提高DSSC的光电转换效率约20%左右。
-
公开(公告)号:CN112151680B
公开(公告)日:2024-04-02
申请号:CN201910560983.7
申请日:2019-06-26
Applicant: 南京大学昆山创新研究院
Abstract: 本发明公开一种大面积钙钛矿太阳能电池封装方法,在钙钛矿太阳能电池的背电极上使用磁控溅射或ALD或真空镀膜的方式制备绝缘层,绝缘层一部分通过电池碳电极的多孔沉积在钙钛矿膜层表面,另一部分直接沉积在碳表面,形成一次封装;再在绝缘层上采用聚亚酰胺、聚四氟乙烯、玻璃纤维中的任一种或上述任意组合形成隔绝层,隔绝层之上依次铺上树脂膜和封装背板;再通过抽真空加压加热设备将树脂膜进行熔融,将封装背板与导电基底粘合,同时将绝缘层与封装背板粘合,完成二次全封装;本发明公开的方法可以在大面积电池上完成,可以得到寿命长、稳定性高、效率高的大面积钙钛矿太阳能电池。
-
公开(公告)号:CN112151680A
公开(公告)日:2020-12-29
申请号:CN201910560983.7
申请日:2019-06-26
Applicant: 南京大学昆山创新研究院
Abstract: 本发明公开一种大面积钙钛矿太阳能电池封装方法,在钙钛矿太阳能电池的背电极上使用磁控溅射或ALD或真空镀膜的方式制备绝缘层,绝缘层一部分通过电池碳电极的多孔沉积在钙钛矿膜层表面,另一部分直接沉积在碳表面,形成一次封装;再在绝缘层上采用聚亚酰胺、聚四氟乙烯、玻璃纤维中的任一种或上述任意组合形成隔绝层,隔绝层之上依次铺上树脂膜和封装背板;再通过抽真空加压加热设备将树脂膜进行熔融,将封装背板与导电基底粘合,同时将绝缘层与封装背板粘合,完成二次全封装;本发明公开的方法可以在大面积电池上完成,可以得到寿命长、稳定性高、效率高的大面积钙钛矿太阳能电池。
-
公开(公告)号:CN112151204A
公开(公告)日:2020-12-29
申请号:CN201910561365.4
申请日:2019-06-26
Applicant: 南京大学昆山创新研究院
IPC: H01B1/22 , H01B1/24 , H01B13/00 , H01L31/0224
Abstract: 本发明公开一种钙钛矿太阳电池背电极浆料包括0.1~1wt%贵金属前驱盐、10~30wt%氧化石墨烯、5~15wt%炭黑、0.1~1wt%粘结剂和溶剂;本发明还公开相应浆料和相应背电极的制备方法;本发明公开的方法,制备工艺简单,可在背电极浆料中形成单层均匀分布状态,提升背电极薄膜均匀性的同时可使得背电极具有较高的比表面积,有利于钙钛矿前驱液的渗透,从而大大提升电池性能,同时,浆料中添加适量贵金属前驱盐,经过涂覆后的高温烧结能在背电极中形成均匀分布的贵金属纳米粒子,可在降低成本的同时提升背电极导电性能,从而提高钙钛矿太阳电池性能。
-
公开(公告)号:CN106601485B
公开(公告)日:2018-08-28
申请号:CN201611196661.1
申请日:2016-12-22
Applicant: 南京大学昆山创新研究院
CPC classification number: Y02E10/542
Abstract: 本发明公开了一种基于三元复合凝胶准固态电解质的染料敏化太阳电池及其制备方法,方法包括以下步骤:将聚合物、纳米无机化合物和石墨烯共同作为胶凝剂与液态碘基电解质混合得三元复合凝胶准固态电解质,再通过丝网印刷的方法将三元复合凝胶准固态电解质印刷到电池的光阳极和对电极上,最后通过紫外固化胶将印刷了三元复合凝胶准固态电解质的光阳极和对电极组装在一起,即形成三元复合凝胶准固态电解质的染料敏化太阳电池。本方法的制备工艺简单,结合了多种材料的优异性能,电池组装过程简易快捷,可大大缩短组装时间,同时可以有效提高准固态电解质与电极间接触的充分性。
-
-
-
-
-
-
-
-
-