-
公开(公告)号:CN114972619B
公开(公告)日:2025-01-10
申请号:CN202110199236.2
申请日:2021-02-22
Applicant: 南京大学
IPC: G06T17/00 , G06V40/16 , G06V10/82 , G06N3/0464
Abstract: 一种基于自对齐双重回归的单图像人脸三维重建方法,包括处理训练数据阶段,网络配置阶段,训练阶段和测试阶段。本发明方法基于注意力机制对人脸未被遮挡区域进行了增强,从而提升了对遮挡的鲁棒性;对三维人脸的姿态和形状进行解耦,单独学习与姿态无关的三维人脸形状回归,提升了人脸重建的精度,削弱了姿态变化的负面影响;将姿态信息编码在作为中间结果的粗糙人脸模型中,并通过自对齐的后处理过程结合估计出的人脸区域可见度提取出人脸姿态,相比于现有单图像人脸三维重建方法中直接回归姿态的方式,本发明对于人脸图像中存在遮挡、姿态变化的情况具有更好的鲁棒性。
-
公开(公告)号:CN114972619A
公开(公告)日:2022-08-30
申请号:CN202110199236.2
申请日:2021-02-22
Applicant: 南京大学
Abstract: 一种基于自对齐双重回归的单图像人脸三维重建方法,包括处理训练数据阶段,网络配置阶段,训练阶段和测试阶段。本发明方法基于注意力机制对人脸未被遮挡区域进行了增强,从而提升了对遮挡的鲁棒性;对三维人脸的姿态和形状进行解耦,单独学习与姿态无关的三维人脸形状回归,提升了人脸重建的精度,削弱了姿态变化的负面影响;将姿态信息编码在作为中间结果的粗糙人脸模型中,并通过自对齐的后处理过程结合估计出的人脸区域可见度提取出人脸姿态,相比于现有单图像人脸三维重建方法中直接回归姿态的方式,本发明对于人脸图像中存在遮挡、姿态变化的情况具有更好的鲁棒性。
-