-
公开(公告)号:CN111325270A
公开(公告)日:2020-06-23
申请号:CN202010101030.7
申请日:2020-02-19
Applicant: 南京大学
Abstract: 基于模板匹配和BP神经网络的东巴文识别方法,由如下步骤构成,1)图片预处理、2)特征提取、3)模板匹配、4)神经网络处理四个步骤;步骤1)中,图片预处理包括二值化、图片去噪和细化处理;图片指直接通过拍照或扫描得到的东巴文彩色图片;步骤2)特征提取包括归一化和笔划特征提取;端点位置特征的提取:计算图片中每一个像素点的以8邻域寻找相邻像素点的个数,仅保留相邻像素点的个数为0或1的像素点;确定这些像素点构成的图片中以8连通寻找每一个连通区域的重心位置,将重心位置的坐标作为端点位置特征;步骤3)模板匹配的方法,利用改进后的豪斯多夫距离计算样本图片的笔划特征与模板图片的笔划特征之间的距离。
-
公开(公告)号:CN111325270B
公开(公告)日:2022-03-25
申请号:CN202010101030.7
申请日:2020-02-19
Applicant: 南京大学
IPC: G06V30/19 , G06V30/244 , G06V30/148 , G06V30/168 , G06V30/164 , G06V30/30 , G06K9/62 , G06N3/08
Abstract: 基于模板匹配和BP神经网络的东巴文识别方法,由如下步骤构成,1)图片预处理、2)特征提取、3)模板匹配、4)神经网络处理四个步骤;步骤1)中,图片预处理包括二值化、图片去噪和细化处理;图片指直接通过拍照或扫描得到的东巴文彩色图片;步骤2)特征提取包括归一化和笔划特征提取;端点位置特征的提取:计算图片中每一个像素点的以8邻域寻找相邻像素点的个数,仅保留相邻像素点的个数为0或1的像素点;确定这些像素点构成的图片中以8连通寻找每一个连通区域的重心位置,将重心位置的坐标作为端点位置特征;步骤3)模板匹配的方法,利用改进后的豪斯多夫距离计算样本图片的笔划特征与模板图片的笔划特征之间的距离。
-