一种基于多源运动特征融合的时序自适应视频分类方法

    公开(公告)号:CN111209883A

    公开(公告)日:2020-05-29

    申请号:CN202010032965.4

    申请日:2020-01-13

    Applicant: 南京大学

    Abstract: 一种基于多源运动特征融合的时序自适应视频分类方法,包括生成训练样例阶段、网络配置阶段、训练阶段以及测试阶段,采用多源多尺度运动信息进行早期融合,融合包括原视频帧序列信息、段内局部帧间差以及全局段间特征差,并在融合过程中实现时序自适应调整策略,完成视频分类任务。本发明在融合多源运动信息的同时,通过时序自适应调整,适配视频分类任务,获得了鲁棒性强且精度高的视频分类方法,提出了融合全局、原有单帧信息、局部运动信息的方式,这种融合位于网络的浅层,使得相比于其他融合策略而言计算更加快速,且具有很好的移植性。

    一种基于多源运动特征融合的时序自适应视频分类方法

    公开(公告)号:CN111209883B

    公开(公告)日:2023-08-04

    申请号:CN202010032965.4

    申请日:2020-01-13

    Applicant: 南京大学

    Abstract: 一种基于多源运动特征融合的时序自适应视频分类方法,包括生成训练样例阶段、网络配置阶段、训练阶段以及测试阶段,采用多源多尺度运动信息进行早期融合,融合包括原视频帧序列信息、段内局部帧间差以及全局段间特征差,并在融合过程中实现时序自适应调整策略,完成视频分类任务。本发明在融合多源运动信息的同时,通过时序自适应调整,适配视频分类任务,获得了鲁棒性强且精度高的视频分类方法,提出了融合全局、原有单帧信息、局部运动信息的方式,这种融合位于网络的浅层,使得相比于其他融合策略而言计算更加快速,且具有很好的移植性。

Patent Agency Ranking