-
公开(公告)号:CN114494314B
公开(公告)日:2025-05-06
申请号:CN202111615241.3
申请日:2021-12-27
Applicant: 南京大学
IPC: G06T7/13 , G06F16/75 , G06N3/0455
Abstract: 时序边界检测方法及时序感知器,基于变换解码器结构和注意力机制,建立通用的无类别时序动作检测模型,检测模型的编码器中引入少量隐特征查询量,通过交叉注意力机制将输入特征压缩到固定维度,并使用变换解码器对特征进行解码,实现通用无类别时序边界的稀疏检测。本发明通过特征压缩,有效解决了长视频的时序冗余问题,并将二次模型的复杂度降低到线性级别;构建边界查询量和上下文查询量这两种隐特征查询量,以相应处理视频中语义不连贯的边界区域和连贯的上下文区域,充分利用视频的语义结构;提出基于交叉注意力计算的对齐损失函数,使网络快速稳定收敛;使用变换解码器稀疏编码边界位置,避免复杂后处理,提高模型泛化性能。
-
公开(公告)号:CN114494314A
公开(公告)日:2022-05-13
申请号:CN202111615241.3
申请日:2021-12-27
Applicant: 南京大学
Abstract: 时序边界检测方法及时序感知器,基于变换解码器结构和注意力机制,建立通用的无类别时序动作检测模型,检测模型的编码器中引入少量隐特征查询量,通过交叉注意力机制将输入特征压缩到固定维度,并使用变换解码器对特征进行解码,实现通用无类别时序边界的稀疏检测。本发明通过特征压缩,有效解决了长视频的时序冗余问题,并将二次模型的复杂度降低到线性级别;构建边界查询量和上下文查询量这两种隐特征查询量,以相应处理视频中语义不连贯的边界区域和连贯的上下文区域,充分利用视频的语义结构;提出基于交叉注意力计算的对齐损失函数,使网络快速稳定收敛;使用变换解码器稀疏编码边界位置,避免复杂后处理,提高模型泛化性能。
-