一种基于半监督学习的增量式图片分类方法

    公开(公告)号:CN112488209B

    公开(公告)日:2024-02-20

    申请号:CN202011396575.1

    申请日:2020-11-25

    Applicant: 南京大学

    Abstract: 本发明提供了一种基于半监督学习的增量式图片分类方法,包括:步骤1,将流数据中出现的新类图片、公开数据集图片(作为辅助数据)进行预处理,分别放到集合A、集合B中;步骤2,对当前模型生成一份副本,并固定副本模型参数;步骤3,使用新数据训练一个teacher模型;步骤4,在当前模型中,对于每个新类别,增加一个分头网络,成为待更新参数的新模型;步骤5,对辅助数据与新数据进行shuffle操作,整体构成最终的训练数据;步骤6,使用模型副本与teacher模型对训练数据计算目标向量;步骤7,将训练数据输入新模型中,根据模型输出结果与目标向量,计算损失值。步骤8,使用梯度下降算法调整模型参数;步骤9,测试模型的预测精度。

    一种基于半监督学习的增量式图片分类方法

    公开(公告)号:CN112488209A

    公开(公告)日:2021-03-12

    申请号:CN202011396575.1

    申请日:2020-11-25

    Applicant: 南京大学

    Abstract: 本发明提供了一种基于半监督学习的增量式图片分类方法,包括:步骤1,将流数据中出现的新类图片、公开数据集图片(作为辅助数据)进行预处理,分别放到集合A、集合B中;步骤2,对当前模型生成一份副本,并固定副本模型参数;步骤3,使用新数据训练一个teacher模型;步骤4,在当前模型中,对于每个新类别,增加一个分头网络,成为待更新参数的新模型;步骤5,对辅助数据与新数据进行shuffle操作,整体构成最终的训练数据;步骤6,使用模型副本与teacher模型对训练数据计算目标向量;步骤7,将训练数据输入新模型中,根据模型输出结果与目标向量,计算损失值。步骤8,使用梯度下降算法调整模型参数;步骤9,测试模型的预测精度。

Patent Agency Ranking