一种基于知识库和多步提示的预训练大模型代码生成方法

    公开(公告)号:CN116594601A

    公开(公告)日:2023-08-15

    申请号:CN202310575020.0

    申请日:2023-05-22

    Applicant: 南京大学

    Abstract: 本发明公开一种基于知识库和多步提示的预训练大模型代码生成方法。首先获得新的问题描述与其对应的测试用例集合,如果不存在算法生成模型,获取大量历史问题描述和测试用例集合,代入提示模板并输入预训练模型生成算法描述,由人类数据标记员对算法描述根据其与知识库的符合程度进行打分和排序,构造训练集合训练知识奖赏模型,作为后续训练过程中的奖赏。将问题描述输入算法生成模型,生成算法描述;将算法描述输入知识奖赏模型评估与知识库的符合程度和代码生成模型评估测试样例通过率,两者作为算法生成模型的优化目标,更新模型参数直至训练误差低于预设阈值。测试过程中生成算法描述与代码解决方案,重复该过程直至代码通过全部测试用例。

Patent Agency Ranking