-
公开(公告)号:CN114003393B
公开(公告)日:2022-06-14
申请号:CN202111639857.4
申请日:2021-12-30
Applicant: 南京大学
Abstract: 本发明公开了一种基于双层树的提高集成型自动机器学习运行性能的方法和系统,对于模型选择和超参数调优两个过程采用了双层树式的逻辑关系。通过极限区域上置信界算法对双层树式的上下两层进行迭代计算。根据机器学习模型库中各模型的初始化分数,自适应地将各模型分配到合适的线程上,有前景的模型将得到更多的初始线程分配。以不同模型和不同超参数配置下的评估指标的分数和运行时间为依据,选择其中若干个模型,基于选中的模型生成集成模型。本发明使自动机器学习方法可以在相同的计算资源下得到更好的最终效果。
-
公开(公告)号:CN113282747A
公开(公告)日:2021-08-20
申请号:CN202110465097.3
申请日:2021-04-28
Applicant: 南京大学
Abstract: 本发明公开一种基于自动机器学习算法选择的文本分类方法,基于级联式自动机器学习的思想,从多种机器学习算法中为文本分类任务配置最优算法,包括:(1)采用文本向量嵌入方法将文本语料数据编码成向量表示,生成文本分类数据集;(2)利用多摇臂赌博机算法从多个机器学习分类算法中选择一个算法;(3)利用超参优化方法自动为所选择的算法搜索一组超参数;(4)基于搜索到的超参数初始化相应算法的超参,并在文本分类数据集上训练模型;(5)重复步骤(2)到步骤(4),直到达到设定的迭代次数,将训练得到的多个分类模型中预测性能最好的模型用于文本分类任务。本方法能自动的为任务文本训练一个鲁棒的分类模型。
-
公开(公告)号:CN114003393A
公开(公告)日:2022-02-01
申请号:CN202111639857.4
申请日:2021-12-30
Applicant: 南京大学
Abstract: 本发明公开了一种基于双层树的提高集成型自动机器学习运行性能的方法和系统,对于模型选择和超参数调优两个过程采用了双层树式的逻辑关系。通过极限区域上置信界算法对双层树式的上下两层进行迭代计算。根据机器学习模型库中各模型的初始化分数,自适应地将各模型分配到合适的线程上,有前景的模型将得到更多的初始线程分配。以不同模型和不同超参数配置下的评估指标的分数和运行时间为依据,选择其中若干个模型,基于选中的模型生成集成模型。本发明使自动机器学习方法可以在相同的计算资源下得到更好的最终效果。
-
公开(公告)号:CN113282747B
公开(公告)日:2023-07-18
申请号:CN202110465097.3
申请日:2021-04-28
Applicant: 南京大学
Abstract: 本发明公开一种基于自动机器学习算法选择的文本分类方法,基于级联式自动机器学习的思想,从多种机器学习算法中为文本分类任务配置最优算法,包括:(1)采用文本向量嵌入方法将文本语料数据编码成向量表示,生成文本分类数据集;(2)利用多摇臂赌博机算法从多个机器学习分类算法中选择一个算法;(3)利用超参优化方法自动为所选择的算法搜索一组超参数;(4)基于搜索到的超参数初始化相应算法的超参,并在文本分类数据集上训练模型;(5)重复步骤(2)到步骤(4),直到达到设定的迭代次数,将训练得到的多个分类模型中预测性能最好的模型用于文本分类任务。本方法能自动的为任务文本训练一个鲁棒的分类模型。
-
-
-