-
公开(公告)号:CN108986060B
公开(公告)日:2021-09-28
申请号:CN201810658877.8
申请日:2018-06-25
Applicant: 南京大学
IPC: G06T5/50
Abstract: 本发明公开了一种基于稀疏与低秩矩阵分解的多幅图片反射光抑制方法,包括;(1)获取在不同角度对于同一场景拍摄得到的多个图像;(2)利用siftflow算法将多个图像对齐;(3)将参考图像P0划分为多个相同大小的patch;(4)对于每个patch,执行如下步骤:A、获取当前patch以及其他图像中与其相似的patch的RGB值形成的列向量,将所述列向量组成RGB矩阵;B、获取当前patch以及其他图像中与其相似的patch中每个像素的最小梯度值所形成的列向量,将所述列向量作为每列的列向量组成最小梯度矩阵;C、根据最小梯度矩阵和RGB矩阵进行稀疏矩阵与低秩矩阵分解;(5)将所有patch对应的低秩矩阵重组,得到抑制反射光后的图像。本发明图像处理效果更好。
-
公开(公告)号:CN108986060A
公开(公告)日:2018-12-11
申请号:CN201810658877.8
申请日:2018-06-25
Applicant: 南京大学
IPC: G06T5/50
Abstract: 本发明公开了一种基于稀疏与低秩矩阵分解的多幅图片反射光抑制方法,包括;(1)获取在不同角度对于同一场景拍摄得到的多个图像;(2)利用siftflow算法将多个图像对齐;(3)将参考图像P0划分为多个相同大小的patch;(4)对于每个patch,执行如下步骤:A、获取当前patch以及其他图像中与其相似的patch的RGB值形成的列向量,将所述列向量组成RGB矩阵;B、获取当前patch以及其他图像中与其相似的patch中每个像素的最小梯度值所形成的列向量,将所述列向量作为每列的列向量组成最小梯度矩阵;C、根据最小梯度矩阵和RGB矩阵进行稀疏矩阵与低秩矩阵分解;(5)将所有patch对应的低秩矩阵重组,得到抑制反射光后的图像。本发明图像处理效果更好。
-