基于视频的血流特征测定及疲劳度判定

    公开(公告)号:CN114723934A

    公开(公告)日:2022-07-08

    申请号:CN202011513300.1

    申请日:2020-12-18

    Applicant: 南京大学

    Abstract: 本发明公布了一种非接触式测定疲劳度的途径,分为两个部分。第一部分通过分析视频中人皮肤区域的像素值随时间变化的序列,经成像光电容积描记法(ImagePhotoplethysmography,IPPG)信号提取、心动窗口提取、血流信号特征提取、特征时延计算和噪声过滤五个步骤得到有效像素位置的血流特征时延。第二部分对有效像素点的血流特征时延与原始视频帧进行数据融合,将视频转化为一张带有血流信息的人皮肤图片,将该图片作为训练对象利用神经网络进行深度学习,得到具有判别疲劳程度能力的网络模型,同时再对血流特征提取和数据融合的算法进行优化,从而形成从视频到人体疲劳程度检测结果的非接触式检测系统。

Patent Agency Ranking