-
公开(公告)号:CN113505829A
公开(公告)日:2021-10-15
申请号:CN202110776663.2
申请日:2021-07-09
Applicant: 南京大学
Abstract: 本发明提供了一种基于变分自编码器的表情序列自动生成方法,包括:(1)在大规模人脸数据集上预训练变分自编码器,使变分自编码器初步具备生成人脸图片的功能。(2)对表情变化序列等间隔取三元组,获取表情连续变化的三元组。(3)利用深度度量学习方法,用三元组的三元损失自监督训练变分自编码器。(4)经过上述步骤,变分自编码具备细粒度的特点,能感知面部表情强度,因此对编码器生成的向量进行插值再解码,即可得到一个完整的表情变化序列。
-
公开(公告)号:CN113505829B
公开(公告)日:2024-04-26
申请号:CN202110776663.2
申请日:2021-07-09
Applicant: 南京大学
IPC: G06F30/27
Abstract: 本发明提供了一种基于变分自编码器的表情序列自动生成方法,包括:(1)在大规模人脸数据集上预训练变分自编码器,使变分自编码器初步具备生成人脸图片的功能。(2)对表情变化序列等间隔取三元组,获取表情连续变化的三元组。(3)利用深度度量学习方法,用三元组的三元损失自监督训练变分自编码器。(4)经过上述步骤,变分自编码具备细粒度的特点,能感知面部表情强度,因此对编码器生成的向量进行插值再解码,即可得到一个完整的表情变化序列。
-