一种基于深度学习和体素的三维点云补全方法

    公开(公告)号:CN112927359B

    公开(公告)日:2024-01-30

    申请号:CN202110303157.1

    申请日:2021-03-22

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于深度学习和体素的三维点云补全方法,包括以下步骤:步骤1:采集不同类别的原始物体模型;步骤2:对原始物体模型进行预处理,得到残缺点云和完整点云;步骤3:用经过预处理后的残缺点云和完整点云训练体素深度神经网络模型;步骤4:采集待补全的残缺点云并进行预处理;步骤5:根据步骤3得到的训练好的模型用步骤4得到的预处理后的点云作为输入进行点云补全。本方法融合了体素和点云结构的优点,通过使用不同类别的物体点云训练深度学习网络模型,再利用训练好的模型对残缺点云进行补全,得到具有细节的、均匀的、多分辨率的补全结果,解决了传统算法难以解决的问题。

    一种基于深度学习和体素的三维点云补全方法

    公开(公告)号:CN112927359A

    公开(公告)日:2021-06-08

    申请号:CN202110303157.1

    申请日:2021-03-22

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于深度学习和体素的三维点云补全方法,包括以下步骤:步骤1:采集不同类别的原始物体模型;步骤2:对原始物体模型进行预处理,得到残缺点云和完整点云;步骤3:用经过预处理后的残缺点云和完整点云训练体素深度神经网络模型;步骤4:采集待补全的残缺点云并进行预处理;步骤5:根据步骤3得到的训练好的模型用步骤4得到的预处理后的点云作为输入进行点云补全。本方法融合了体素和点云结构的优点,通过使用不同类别的物体点云训练深度学习网络模型,再利用训练好的模型对残缺点云进行补全,得到具有细节的、均匀的、多分辨率的补全结果,解决了传统算法难以解决的问题。

Patent Agency Ranking