基于机器学习的网络用户分类方法

    公开(公告)号:CN113139624A

    公开(公告)日:2021-07-20

    申请号:CN202110537802.6

    申请日:2021-05-18

    Applicant: 南京大学

    Abstract: 本申请提供了一种基于机器学习的网络用户分类方法,包括如下步骤:将网络用户特征数据构成若干个源网络用户特征数据;保存源网络用户分类任务的优化经验;将优化经验训练成方向模型;使用贝叶斯优化方法连续采样多个超参数组并保存所采样的多个超参数组;利用方向模型在保存的多个所述超参数组中选择最优的所述超参数组;对所选择的所述超参数组进行采样评估,计算真实的评估结果与方向模型对所述超参数组的评估结果的误差;根据所述真实的评估结果与方向模型对所述超参数组的评估结果的误差对所述方向模型进行调整。本申请的有益之处在于为网络用户分类问题提供了一种在机器学习的超参数优化过程中摆脱对大量采样的依赖从而提升超参数优化效率的基于贝叶斯优化的机器学习超参数处理方法。

Patent Agency Ranking