一种基于深度学习的LiDAR点云与光学影像先验级耦合分类方法

    公开(公告)号:CN111950658B

    公开(公告)日:2024-02-09

    申请号:CN202010886292.9

    申请日:2020-08-28

    Applicant: 南京大学

    Abstract: 市地表覆盖二维分类与三维分类之间的联系。本发明公开了一种基于深度学习的LiDAR点云与光学影像先验级耦合分类方法,属于遥感科学技术领域。本发明步骤为:首先通过二维深度卷积网络分类多波段光学影像;再将地表覆盖二维分类的结果(即类别概率)利用最近邻算法赋予机载LiDAR点云,作为三维点云的先验概率特征;而后采用三维神经网络分类已嵌入二维类别概率的LiDAR点云,得到最终的城市三维土地覆盖分类结果。本发明利用先验级耦合策略将光学影像提供的波段信息赋予LIDAR点云,弥补了现(56)对比文件Xiaoqiang Liu等.HierarchicalClassification of Urban ALS Data by UsingGeometry and Intensity Information.《Sensors》.2019,第19卷(第20期),4583.Yangyan Li等.2D-3D fusion for layerdecomposition of urban facades《.2011International Conference on ComputerVision》.2012,882-889.Hassan Ghassemian.A review of remotesensing image fusion methods《.InformationFusion》.2016,第32卷75-89.

    一种基于深度学习的LiDAR点云与光学影像先验级耦合分类方法

    公开(公告)号:CN111950658A

    公开(公告)日:2020-11-17

    申请号:CN202010886292.9

    申请日:2020-08-28

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于深度学习的LiDAR点云与光学影像先验级耦合分类方法,属于遥感科学技术领域。本发明步骤为:首先通过二维深度卷积网络分类多波段光学影像;再将地表覆盖二维分类的结果(即类别概率)利用最近邻算法赋予机载LiDAR点云,作为三维点云的先验概率特征;而后采用三维神经网络分类已嵌入二维类别概率的LiDAR点云,得到最终的城市三维土地覆盖分类结果。本发明利用先验级耦合策略将光学影像提供的波段信息赋予LIDAR点云,弥补了现有三维LiDAR点云数据中存在较少的标注数据的问题,先验级耦合策略分类策略可以降低训练过程的损失,以获得更好的分类效果,并阐释了城市地表覆盖二维分类与三维分类之间的联系。

Patent Agency Ranking