水稻光谱胁迫指数构建方法、系统、设备及存储介质

    公开(公告)号:CN119478703A

    公开(公告)日:2025-02-18

    申请号:CN202510013320.9

    申请日:2025-01-06

    Abstract: 本发明公开了水稻光谱胁迫指数构建方法、系统、计算机设备和存储介质,涉及水稻胁迫分类技术领域,包括:定期拍摄不同组别水稻叶片得到原始高光谱图像进行黑白矫正;对不同胁迫下的水稻叶片提取感兴趣区域,计算平均光谱数据并进行SG平滑滤波器处理;使用生成对抗网络提取贡献度最高的50个特征波段;将特征波段对应的平均光谱数据作为模型输入数据输入随机森林分类模型,得到模型分类结果;同时筛选前5的特征波段及对应权重构建光谱指数,得到胁迫指数划分胁迫类别,输出水稻的胁迫原因。本发明更高效地捕捉数据中的非线性关系,提高分类模型性能,计算效率高、适应性强,大幅度减少高光谱数据的维度,有效降低了模型计算复杂度。

    一种水稻白叶枯病早期无症状检测方法

    公开(公告)号:CN116416524A

    公开(公告)日:2023-07-11

    申请号:CN202310330513.8

    申请日:2023-03-30

    Abstract: 本发明公开了一种水稻白叶枯病早期无症状检测方法,包括以下步骤:利用随机森林算法在特征波长区间中选取出高重要性评分的光谱波长作为特征敏感波长;将特征敏感波长处的高光谱图像作为用于区分高光谱图像所属叶片类别的敏感图像特征;基于敏感图像特征对3DCNN模型训练得到用于水稻白叶枯病早期无症状检测的3DCNN无症状检测模型;在3DCNN无症状检测模型中引入多尺度光谱空洞卷积模块进行精度优化得到MS‑SDC‑3DCNN模型。本发明利用随机森林算法对高光谱图像进行降维,采用多尺度光谱空洞卷积模块对无症状检测模型进行优化,无症状检测模型利用经提取和融合后多个波长分辨率的特征,更有效地使用重要的波长信息,以提高无症状检测模型的检测性能。

Patent Agency Ranking