一种基于改进U-Net神经网络的道路裂缝检测方法

    公开(公告)号:CN112949783B

    公开(公告)日:2023-09-26

    申请号:CN202110471512.6

    申请日:2021-04-29

    Abstract: 本发明公开了一种基于改进U‑Net神经网络的道路裂缝检测方法,包括:1)采集道路裂缝图像,构建道路裂缝数据集,并进行预处理操作,形成训练集和测试集;2)构建改进U‑Net神经网络模型;3)基于所述训练集,对所述改进U‑Net神经网络模型进行训练;4)基于所述测试集,对训练完成的改进U‑Net神经网络模型进行测试,输出检测结果,并对模型进行评估,得出模型性能。本发明方法构建的改进U‑Net神经网络引入带扩张率的空洞卷积,可以减少卷积层的层数,减少模型的参数,同时节省了计算资源,降低了计算成本。本发明方法构建的改进U‑Net神经网络在每个卷积层后,加入BN层,加速模型的训练,防止梯度爆炸。

    一种基于改进U-Net神经网络的道路裂缝检测方法

    公开(公告)号:CN112949783A

    公开(公告)日:2021-06-11

    申请号:CN202110471512.6

    申请日:2021-04-29

    Abstract: 本发明公开了一种基于改进U‑Net神经网络的道路裂缝检测方法,包括:1)采集道路裂缝图像,构建道路裂缝数据集,并进行预处理操作,形成训练集和测试集;2)构建改进U‑Net神经网络模型;3)基于所述训练集,对所述改进U‑Net神经网络模型进行训练;4)基于所述测试集,对训练完成的改进U‑Net神经网络模型进行测试,输出检测结果,并对模型进行评估,得出模型性能。本发明方法构建的改进U‑Net神经网络引入带扩张率的空洞卷积,可以减少卷积层的层数,减少模型的参数,同时节省了计算资源,降低了计算成本。本发明方法构建的改进U‑Net神经网络在每个卷积层后,加入BN层,加速模型的训练,防止梯度爆炸。

Patent Agency Ranking