基于CNN-XGBOOST模型的短时强降水预测方法

    公开(公告)号:CN115860268A

    公开(公告)日:2023-03-28

    申请号:CN202310134699.X

    申请日:2023-02-20

    Abstract: 本发明公开了一种基于CNN‑XGBOOST模型的短时强降水预测方法,属于城市内涝监测预警领域。现有短时强降水预测模型多依赖雷达数据,不适用于雷达数据缺失或失真的情况。此外还可以依赖大气环境物理量进行预测,但多使用机器学习方法和CNN等深度学习方法,机器学习方法无法很好的应对特征变量很多的情况及提取特征变量的时间变化特征;而CNN等深度学习方法可以很好的提取特征,但无法很好的运行特征进行预测。因此,提出一种基于CNN‑XGBOOST模型的短时强降水预测方法,本方法可以在不需求雷达回波数据的情况下进行短时强降水预测,同时可以提取特征变量的时间变化特征,并充分利用提取出的特征进行预测。

    基于CNN-XGBOOST模型的短时强降水预测方法

    公开(公告)号:CN115860268B

    公开(公告)日:2023-07-14

    申请号:CN202310134699.X

    申请日:2023-02-20

    Abstract: 本发明公开了一种基于CNN‑XGBOOST模型的短时强降水预测方法,属于城市内涝监测预警领域。现有短时强降水预测模型多依赖雷达数据,不适用于雷达数据缺失或失真的情况。此外还可以依赖大气环境物理量进行预测,但多使用机器学习方法和CNN等深度学习方法,机器学习方法无法很好的应对特征变量很多的情况及提取特征变量的时间变化特征;而CNN等深度学习方法可以很好的提取特征,但无法很好的运行特征进行预测。因此,提出一种基于CNN‑XGBOOST模型的短时强降水预测方法,本方法可以在不需求雷达回波数据的情况下进行短时强降水预测,同时可以提取特征变量的时间变化特征,并充分利用提取出的特征进行预测。

Patent Agency Ranking