-
公开(公告)号:CN118798392B
公开(公告)日:2025-04-15
申请号:CN202411084480.4
申请日:2024-08-08
Applicant: 南京信息工程大学
Abstract: 本发明属于移动边缘计算通信技术领域,具体涉及移动边缘网络中个性化联邦学习的成本效益协同优化方法,包括,数据集的收集和处理,收集高速公路交通数据集的轨迹数据和手写数字数据集的数字图片,并将数字图片调整为相同大小,节点评估,通过优劣解距离法来评估所有节点的好坏,节点选择,在所有节点概率确定的条件下,根据概率随机选择参与训练的移动节点,模型训练,分别利用MCLR和DNN网络训练处理过的训练集数据对模型进行训练,模型传输,将训练好的模型参数调整,并上传到边缘服务器。本发明能够有利于缓解数据高异构性的问题同时提高模型训练精度,并大大降低了传输成本和通信延迟。
-
公开(公告)号:CN118798392A
公开(公告)日:2024-10-18
申请号:CN202411084480.4
申请日:2024-08-08
Applicant: 南京信息工程大学
Abstract: 本发明属于移动边缘计算通信技术领域,具体涉及移动边缘网络中个性化联邦学习的成本效益协同优化方法,包括,数据集的收集和处理,收集高速公路交通数据集的轨迹数据和手写数字数据集的数字图片,并将数字图片调整为相同大小,节点评估,通过优劣解距离法来评估所有节点的好坏,节点选择,在所有节点概率确定的条件下,根据概率随机选择参与训练的移动节点,模型训练,分别利用MCLR和DNN网络训练处理过的训练集数据对模型进行训练,模型传输,将训练好的模型参数调整,并上传到边缘服务器。本发明能够有利于缓解数据高异构性的问题同时提高模型训练精度,并大大降低了传输成本和通信延迟。
-