-
公开(公告)号:CN115762536A
公开(公告)日:2023-03-07
申请号:CN202211512964.5
申请日:2022-11-25
Applicant: 南京信息工程大学
IPC: G10L17/26 , G06F18/2415 , G06F18/25
Abstract: 本发明公开一种基于桥接Transformer的小样本优化鸟声识别方法,包括获取BTNN鸟声识别网络模型,提取鸟鸣声信号的短时傅里叶变换生成语谱图作为整体网络模型的输入特征;利用桥接Transformer结构对STFT语谱图局部特征与全局特征的信息进行提取及补全融合,获得鸟声特征参数;引入样本损失优化模块SLOBlock,利用单层Transformer编码器的交叉注意机制,对来自主干网络输出特征图进行关系建模,从内部优化网络本身对小样本数据集的训练测试;在Birdsdata数据集和xeno‑canto数据集上进行实验,将优化后的特征输入到Softmax分类器中得到识别结果。本发明通过设计BTNN模型以提升在样本数据稀缺情况下鸟声识别测试的准确率,同时加强对输入语谱图在全局与局部层面上的信息交互,提高对输入特征的提取利用。