-
公开(公告)号:CN116524419B
公开(公告)日:2023-11-07
申请号:CN202310802044.5
申请日:2023-07-03
Applicant: 南京信息工程大学 , 南京中网卫星通信股份有限公司
IPC: G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06V10/80 , G06N3/048
Abstract: 本发明公开了基于时空解耦与自注意力差分LSTM的视频预测方法、系统,该方法包括:引入对抗性损失约束和相似性约束构建时空解耦网络,获得视频的解耦特征;利用差分运算设计动态差分模型,替换传统LSTM单元的遗忘门;在注意力基础上设计一个门控机制,将长时记忆与被注意的特征深度融合,组建新的全局自注意力模型;结合动态差分模型和全局自注意力模型,组建DISA‑LSTM单元,并使用对角循环体系结构堆叠该单元,构建DISA‑LSTM预测网络;基于卷积自编码器搭建网络整体架构,并联合损失函数训练模型。本发明有效提高了网络捕获高维动态复杂特征的能力和视频预测的精确性,降低了高维视频数据给预测工作带来的复杂程度。
-
公开(公告)号:CN117152657A
公开(公告)日:2023-12-01
申请号:CN202311067149.7
申请日:2023-08-23
Applicant: 南京信息工程大学 , 南京中网卫星通信股份有限公司
IPC: G06V20/40 , G06V10/44 , G06V10/86 , G06N3/0442 , G06T3/40
Abstract: 本发明公开了一种结合时空记忆特征和运动感知的视频预测方法、系统,包括:在标准门控循环单元的基础上,添加调制门,利用调制门和重置门协同作用控制遗忘信息;引入时空记忆和注意力机制设计时空注意融合单元;在梯度高速公路单元的基础上引入运动感知,提出运动梯度高速公路单元,获得帧间的瞬态变化和运动趋势;将时空注意融合单元与运动高速公路调制单元协同工作,构建新型循环神经网络,实现对视频的预测。本发明减少了特征提取过程信息的丢失以及梯度消失问题的影响,获得多粒度的时空特征和运动信息,大大提高视频的预测精度和效率。
-
公开(公告)号:CN109814179A
公开(公告)日:2019-05-28
申请号:CN201910007252.X
申请日:2019-01-04
Applicant: 南京信息工程大学
IPC: G01W1/10
Abstract: 本发明提出了一种基于云感知的应急通信处理系统,该系统主要由三部分组成:云端中心实现空天地信息采集存储,同化预报中心实现信息同化及预报,预警信息发布平台实现预警信息更新与发布。首先,云端中心通过卫星主站、气象气艇和气象雷达等设备完成信息的采集并基于云架构进行存储;其次,同化预报中心以4D-WRF-EnSRF算法为核心对已获得的各类信息进行同化处理,并以云资源的方式送入预警信息发布平台;最后,预警信息发布平台建立预警信息发布网络,将预警信息以DAB、互联网及网络等方式在第一时间送至灾害现场,保障救援行动有效执行及群众快速疏散。
-
公开(公告)号:CN109660290A
公开(公告)日:2019-04-19
申请号:CN201811405667.4
申请日:2018-11-23
Applicant: 南京信息工程大学
CPC classification number: H04B7/18571 , H04B7/18597 , H04W4/12
Abstract: 本发明提出的一种基于多卫星多频段的多架构应急保障系统由三部分组成:近地面同化预报中心实现近地面信息同化,监控监测子系统实现现场信息分析及监督,多源数据通信系统保障救援通信质量。首先,近地面同化预报中心以北斗卫星群、天通卫星及通信卫星为信息源,利用WRF-EnSRF同化系统对采集到的气象,地理及灾情信息进行同化,并通过预警信息发布网络实现信息发布;其次,监控监测子系统对现场获得的定位信息、气象参数及环境分布等数据进行提取分析融合,在同化预报中心及多源数据通信系统中架起一座桥梁,实现信息的实时获取及监督;最后,多源数据通信模块利用广播、雷达及局域网在内的多种通信手段实现了音频、视频及文字信息的传递。
-
公开(公告)号:CN116524419A
公开(公告)日:2023-08-01
申请号:CN202310802044.5
申请日:2023-07-03
Applicant: 南京信息工程大学 , 南京中网卫星通信股份有限公司
IPC: G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06V10/80 , G06N3/048
Abstract: 本发明公开了基于时空解耦与自注意力差分LSTM的视频预测方法、系统,该方法包括:引入对抗性损失约束和相似性约束构建时空解耦网络,获得视频的解耦特征;利用差分运算设计动态差分模型,替换传统LSTM单元的遗忘门;在注意力基础上设计一个门控机制,将长时记忆与被注意的特征深度融合,组建新的全局自注意力模型;结合动态差分模型和全局自注意力模型,组建DISA‑LSTM单元,并使用对角循环体系结构堆叠该单元,构建DISA‑LSTM预测网络;基于卷积自编码器搭建网络整体架构,并联合损失函数训练模型。本发明有效提高了网络捕获高维动态复杂特征的能力和视频预测的精确性,降低了高维视频数据给预测工作带来的复杂程度。
-
公开(公告)号:CN109814179B
公开(公告)日:2021-01-12
申请号:CN201910007252.X
申请日:2019-01-04
Applicant: 南京信息工程大学
IPC: G01W1/10
Abstract: 本发明提出了一种基于云感知的应急通信处理系统,该系统主要由三部分组成:云端中心实现空天地信息采集存储,同化预报中心实现信息同化及预报,预警信息发布平台实现预警信息更新与发布。首先,云端中心通过卫星主站、气象气艇和气象雷达等设备完成信息的采集并基于云架构进行存储;其次,同化预报中心以4D‑WRF‑EnSRF算法为核心对已获得的各类信息进行同化处理,并以云资源的方式送入预警信息发布平台;最后,预警信息发布平台建立预警信息发布网络,将预警信息以DAB、互联网及网络等方式在第一时间送至灾害现场,保障救援行动有效执行及群众快速疏散。
-
-
-
-
-