-
公开(公告)号:CN116631043B
公开(公告)日:2023-09-22
申请号:CN202310912988.8
申请日:2023-07-25
Applicant: 南京信息工程大学
IPC: G06V40/16 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种自然对抗补丁生成方法、目标检测模型的训练方法及装置,自然对抗补丁生成方法,包括:将自然图像通过预训练好的自动编码器中的编码器进行感知压缩,得到潜在空间;利用扩散模型学习潜在空间并进行训练,得到训练好的扩散模型;从高斯分布中采样一个随机噪声,并通过训练好的扩散模型将所述随机噪声映射到潜在空间中的隐变量,得到映射隐变量,随后通过预训练好的自动编码器中的解码器对映射隐变量采样得到自然对抗补丁。本发明通过生成一种具有人们熟悉的图案和内容的自然对抗补丁,用于对目标检测器或人脸识别系统进行训练,能有效提高目标检测器或人脸识别系统的检测精度以及鲁棒性。
-
公开(公告)号:CN116993893B
公开(公告)日:2024-01-12
申请号:CN202311250057.2
申请日:2023-09-26
Applicant: 南京信息工程大学
IPC: G06T15/04 , G06V10/774 , G06V10/82 , G06V10/80 , G06V10/764 , G06N3/084 , A63F13/75 , A63F13/837
Abstract: 本发明公开了一种抵御AI自瞄作弊的对抗贴图生成方法及装置,包括:将噪声数据集输入至基于神经网络预先构建的检测器,获取神经网络检测结果;根据真实分类标签和神经网络检测结果计算损失值Loss;将损失值Loss进行反向传播,通过梯度下降法更新所述噪声图像n;重复迭代直到损失值Loss收敛输出训练好的噪声图像 ;将训练好的噪声图像转化为对抗贴图;将训练好的噪声图像 与游戏物品贴图文件相融合,对抗贴图与游戏地面贴图文件相融合用于抵御AI自瞄作弊;所述对抗贴图使AI自瞄作弊程序将游戏画面识别成多个玩家目标,从而降低游戏中正常游戏玩家被AI自
-
公开(公告)号:CN116631043A
公开(公告)日:2023-08-22
申请号:CN202310912988.8
申请日:2023-07-25
Applicant: 南京信息工程大学
IPC: G06V40/16 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种自然对抗补丁生成方法、目标检测模型的训练方法及装置,自然对抗补丁生成方法,包括:将自然图像通过预训练好的自动编码器中的编码器进行感知压缩,得到潜在空间;利用扩散模型学习潜在空间并进行训练,得到训练好的扩散模型;从高斯分布中采样一个随机噪声,并通过训练好的扩散模型将所述随机噪声映射到潜在空间中的隐变量,得到映射隐变量,随后通过预训练好的自动编码器中的解码器对映射隐变量采样得到自然对抗补丁。本发明通过生成一种具有人们熟悉的图案和内容的自然对抗补丁,用于对目标检测器或人脸识别系统进行训练,能有效提高目标检测器或人脸识别系统的检测精度以及鲁棒性。
-
公开(公告)号:CN115358908A
公开(公告)日:2022-11-18
申请号:CN202210988321.1
申请日:2022-08-17
Applicant: 南京信息工程大学
IPC: G06T1/00 , G06V20/62 , G06V10/82 , G06V10/774
Abstract: 本发明公开了基于轻量级网络对抗的车牌防盗摄隐私保护方法及系统,属于机器视觉和隐私保护技术领域,方法包括:获取原始车牌图片;根据原始车牌图片设计对抗补丁样本和斑点并叠加到原始车牌图片上,得到防盗摄车牌图片,所述防盗摄车牌图片用于通过车牌制造设备打印后贴在机动车车牌上;实现对基于轻量级神经网络的盗摄摄像头采集算法的攻击,却不会对公共服务的专业电子监控摄像头起作用,从而达到了对车辆信息及用户信息的隐私保护。
-
公开(公告)号:CN117114146B
公开(公告)日:2024-03-29
申请号:CN202311007539.5
申请日:2023-08-11
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种联邦学习模型中毒重建的方法、装置、介质及设备,所述方法包括获取中毒的联邦学习模型;基于各客户机在训练期间的本地模型的准确率,筛选出在联邦学习模型训练期间中毒的客户机,删除联邦学习模型中由中毒的客户机聚合得到的局部模型,将中毒的客户机作为恶意节点、未中毒的客户机作为诚实节点,将恶意节点从初始DAG网络中移除,得到第二DAG网络;基于第二DAG网络中各诚实节点的本地模型,逐轮聚合各诚实节点的本地模型,得到联邦学习模型的最新全局模型,完成联邦学习模型中毒重建。本发明能够快速剔除恶意节点,将已有的阶段训练成果加入到新一轮训练中,提高联邦学习的训练效率和抗攻击能力。
-
公开(公告)号:CN117114146A
公开(公告)日:2023-11-24
申请号:CN202311007539.5
申请日:2023-08-11
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种联邦学习模型中毒重建的方法、装置、介质及设备,所述方法包括获取中毒的联邦学习模型;基于各客户机在训练期间的本地模型的准确率,筛选出在联邦学习模型训练期间中毒的客户机,删除联邦学习模型中由中毒的客户机聚合得到的局部模型,将中毒的客户机作为恶意节点、未中毒的客户机作为诚实节点,将恶意节点从初始DAG网络中移除,得到第二DAG网络;基于第二DAG网络中各诚实节点的本地模型,逐轮聚合各诚实节点的本地模型,得到联邦学习模型的最新全局模型,完成联邦学习模型中毒重建。本发明能够快速剔除恶意节点,将已有的阶段训练成果加入到新一轮训练中,提高联邦学习的训练效率和抗攻击能力。
-
公开(公告)号:CN116993893A
公开(公告)日:2023-11-03
申请号:CN202311250057.2
申请日:2023-09-26
Applicant: 南京信息工程大学
IPC: G06T15/04 , G06V10/774 , G06V10/82 , G06V10/80 , G06V10/764 , G06N3/084 , A63F13/75 , A63F13/837
Abstract: 本发明公开了一种抵御AI自瞄作弊的对抗贴图生成方法及装置,包括:将噪声数据集#imgabs0#输入至基于神经网络预先构建的检测器,获取神经网络检测结果;根据真实分类标签和神经网络检测结果计算损失值Loss;将损失值Loss进行反向传播,通过梯度下降法更新所述噪声图像n;重复迭代直到损失值Loss收敛输出训练好的噪声图像#imgabs1#;将训练好的噪声图像#imgabs2#转化为对抗贴图;将训练好的噪声图像#imgabs3#与游戏物品贴图文件相融合,对抗贴图与游戏地面贴图文件相融合用于抵御AI自瞄作弊;所述对抗贴图使AI自瞄作弊程序将游戏画面识别成多个玩家目标,从而降低游戏中正常游戏玩家被AI自瞄作弊程序锁定的概率;保证游戏竞技的公平性。
-
-
-
-
-
-