一种基于集成学习的降水预测方法及系统

    公开(公告)号:CN116306215B

    公开(公告)日:2024-10-29

    申请号:CN202211569847.2

    申请日:2022-12-08

    Abstract: 本发明公开了一种基于集成学习的降水预测方法及系统,方法包括:获取需要降水预测时段和区域的预报因子,构建准时空同步的训练集和测试集;使用训练集通过相互交叉验证分别训练随机森林、XGBoost和极度随机树三种单一机器学习模型,并对三种单一机器学习模型的定量降水估计结果进行线性回归得到三种单一机器学习模型的权重,对测试集的三种单一机器学习模型定量降水估计结果加权相加,得到基于集成学习的定量降水估计;将基于集成学习的定量降水估计设为初估场、通过双调和样条插值的同一时空分辨率下的高密度自动站降水观测设为观测值,对初估场和观测值进行最优插值融合,用于降水预测。本发明提高了降水预测的准确性和实用性。

    一种基于集成学习的降水预测方法及系统

    公开(公告)号:CN116306215A

    公开(公告)日:2023-06-23

    申请号:CN202211569847.2

    申请日:2022-12-08

    Abstract: 本发明公开了一种基于集成学习的降水预测方法及系统,方法包括:获取需要降水预测时段和区域的预报因子,构建准时空同步的训练集和测试集;使用训练集通过相互交叉验证分别训练随机森林、XGBoost和极度随机树三种单一机器学习模型,并对三种单一机器学习模型的定量降水估计结果进行线性回归得到三种单一机器学习模型的权重,对测试集的三种单一机器学习模型定量降水估计结果加权相加,得到基于集成学习的定量降水估计;将基于集成学习的定量降水估计设为初估场、通过双调和样条插值的同一时空分辨率下的高密度自动站降水观测设为观测值,对初估场和观测值进行最优插值融合,用于降水预测。本发明提高了降水预测的准确性和实用性。

Patent Agency Ranking