一种基于改进卷积神经网络的多源卫星有效波高融合方法

    公开(公告)号:CN118153640B

    公开(公告)日:2024-08-02

    申请号:CN202410587251.8

    申请日:2024-05-13

    Abstract: 本发明公开了一种基于改进卷积神经网络的多源卫星有效波高融合方法,包括以下步骤:(1)构建多源卫星有效波高沿轨逐日数据集并进行预处理;(2)提取对应真实值和缺测值位置,构建对应位置的mask掩码数据集,构建基于ERA5的有效波高数据的训练集;(3)搭建改进的深度学习模型RA−PUNet;(4)基于步骤(2)的训练集,mask掩码数据集和RA−PUNet模型进行训练,得到最精确的建立波高场;(5)基于多源卫星高度计有效波高数据,建立出无缺测的海面有效波高融合数据集;本发明建立长序列多源海面有效波高格点融合资料,建立自主可控、精度一致的25km分辨率逐日有效波高融合数据集。

    一种基于改进卷积神经网络的多源卫星有效波高融合方法

    公开(公告)号:CN118153640A

    公开(公告)日:2024-06-07

    申请号:CN202410587251.8

    申请日:2024-05-13

    Abstract: 本发明公开了一种基于改进卷积神经网络的多源卫星有效波高融合方法,包括以下步骤:(1)构建多源卫星有效波高沿轨逐日数据集并进行预处理;(2)提取对应真实值和缺测值位置,构建对应位置的mask掩码数据集,构建基于ERA5的有效波高数据的训练集;(3)搭建改进的深度学习模型RA−PUNet;(4)基于步骤(2)的训练集,mask掩码数据集和RA−PUNet模型进行训练,得到最精确的建立波高场;(5)基于多源卫星高度计有效波高数据,建立出无缺测的海面有效波高融合数据集;本发明建立长序列多源海面有效波高格点融合资料,建立自主可控、精度一致的25km分辨率逐日有效波高融合数据集。

Patent Agency Ranking