-
公开(公告)号:CN108648182B
公开(公告)日:2022-02-11
申请号:CN201810393335.2
申请日:2018-04-27
Applicant: 南京信息工程大学
Abstract: 本发明涉及一种基于分子亚型的乳腺癌核磁共振图像肿瘤区域分割方法,属于图像信息处理技术领域。动态选择乳腺癌核磁共振图像1%‑99%范围的CT值进行归一化预处理后输入YOLO_v2检测模型,验证集的损失及分类准确率、获得深度检测网络模型,并将图片送入该模型得到检测框;然后采用k‑mean算法聚类出乳腺癌核磁共振图片医生标记区域中心点取出144*144像素点的块,送入SegNet分割模型进行训练,得出肿瘤区域分割模型,根据之前获得的检测框选择144*144像素块送入该区域分割模型得到分割概率图,再将该图根据之前获得的置信度最大框中心点映射到原图,即得最终肿瘤分割图。具有分割效率、准确率高等优点。
-
公开(公告)号:CN107665492A
公开(公告)日:2018-02-06
申请号:CN201710516329.7
申请日:2017-06-29
Applicant: 南京信息工程大学
CPC classification number: G06T7/11 , G06K9/6267 , G06N3/0481 , G06N3/08 , G06T3/4038 , G06T2207/10056 , G06T2207/20081 , G06T2207/20084 , G06T2207/30028 , G06T2207/30096
Abstract: 本发明公开一种基于深度网络的结直肠全景数字病理图像组织分割方法,包括以下步骤:(1)获取结直肠全景数字病理图片:(2)将结直肠的全景数字图像分割;(3)训练样本图像的建立;(4)提取不同类别的组织深度特征;(5)利用分类器和提取的组织深度特征对分割图像中的组织进行类别的判别;(6)将步图像分类结果拼接,判别出整张图片的组织分类;(7)按照分块坐标将图像进行拼接在一起;本发明对结直肠全景数字病理图像进行分割,利用滑动窗口和训练的模型对所有分割图像依次标记组织类型,同时,利用分类器和提取的组织深度特征对组织进行类别的判别,得到图像分类结果,分类准确,分类速度快。
-
公开(公告)号:CN107665492B
公开(公告)日:2020-11-10
申请号:CN201710516329.7
申请日:2017-06-29
Applicant: 南京信息工程大学
Abstract: 本发明公开一种基于深度网络的结直肠全景数字病理图像组织分割方法,包括以下步骤:(1)获取结直肠全景数字病理图片:(2)将结直肠的全景数字图像分割;(3)训练样本图像的建立;(4)提取不同类别的组织深度特征;(5)利用分类器和提取的组织深度特征对分割图像中的组织进行类别的判别;(6)将步图像分类结果拼接,判别出整张图片的组织分类;(7)按照分块坐标将图像进行拼接在一起;本发明对结直肠全景数字病理图像进行分割,利用滑动窗口和训练的模型对所有分割图像依次标记组织类型,同时,利用分类器和提取的组织深度特征对组织进行类别的判别,得到图像分类结果,分类准确,分类速度快。
-
公开(公告)号:CN108648182A
公开(公告)日:2018-10-12
申请号:CN201810393335.2
申请日:2018-04-27
Applicant: 南京信息工程大学
Abstract: 本发明涉及一种基于分子亚型的乳腺癌核磁共振图像肿瘤区域分割方法,属于图像信息处理技术领域。动态选择乳腺癌核磁共振图像1%-99%范围的CT值进行归一化预处理后输入YOLO_v2检测模型,验证集的损失及分类准确率、获得深度检测网络模型,并将图片送入该模型得到检测框;然后采用k-mean算法聚类出乳腺癌核磁共振图片医生标记区域中心点取出144*144像素点的块,送入SegNet分割模型进行训练,得出肿瘤区域分割模型,根据之前获得的检测框选择144*144像素块送入该区域分割模型得到分割概率图,再将该图根据之前获得的置信度最大框中心点映射到原图,即得最终肿瘤分割图。具有分割效率、准确率高等优点。
-
公开(公告)号:CN106096648A
公开(公告)日:2016-11-09
申请号:CN201610403385.5
申请日:2016-06-08
Applicant: 南京信息工程大学
IPC: G06K9/62
CPC classification number: G06K9/6269
Abstract: 本发明公开了一种基于Hash编码的超光谱遥感图像分类方法,属于图像信息处理技术领域,提出了用块Hash自动编码的思想来处理超光谱遥感图像,本发明提出了用Hash自动编码的思想来处理超光谱遥感图像,将遥感图像每个通道提取出来,分成块,将每个小块先进行分段Hash处理,生成Hash序列用来表征块的特征,然后将生成的编码进行SVM分类。和基于传统像素的分类方法相比,在相同的实验条件下,本发明方法的图像分类结果更加准确,视觉效果更好。
-
-
-
-