-
公开(公告)号:CN117474797B
公开(公告)日:2024-03-19
申请号:CN202311832535.0
申请日:2023-12-28
Applicant: 南京信息工程大学
IPC: G06T5/70 , G06T5/50 , G06T5/60 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种多尺度互补学习的图像去噪方法及装置,方法包括:步骤1:图像预处理之后得到标准化的基层和细节层;步骤2:将细节层输入细节特征学习分支得到第一个图像细节特征;步骤3:将细节层输入噪声学习分支得到第二个图像细节特征;步骤4:融合两个分支学习得到的图像细节特征;步骤5:将最终的图像细节特征和基层相加得到去噪后的图像;步骤6:计算损失并迭代训练,重复步骤2至步骤5并保存最优去噪模型;步骤7:将测试图像输入保存好的去噪模型进行测试。当噪声水平越高时,去噪模型的去噪效果越好,使噪声的去除和细节的保留之间达到良好的平衡。同时只使用了细节层参与去噪模型训练,极大减少了计算量。
-
公开(公告)号:CN117474797A
公开(公告)日:2024-01-30
申请号:CN202311832535.0
申请日:2023-12-28
Applicant: 南京信息工程大学
IPC: G06T5/70 , G06T5/50 , G06T5/60 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种多尺度互补学习的图像去噪方法及装置,方法包括:步骤1:图像预处理之后得到标准化的基层和细节层;步骤2:将细节层输入细节特征学习分支得到第一个图像细节特征;步骤3:将细节层输入噪声学习分支得到第二个图像细节特征;步骤4:融合两个分支学习得到的图像细节特征;步骤5:将最终的图像细节特征和基层相加得到去噪后的图像;步骤6:计算损失并迭代训练,重复步骤2至步骤5并保存最优去噪模型;步骤7:将测试图像输入保存好的去噪模型进行测试。当噪声水平越高时,去噪模型的去噪效果越好,使噪声的去除和细节的保留之间达到良好的平衡。同时只使用了细节层参与去噪模型训练,极大减少了计算量。
-