-
公开(公告)号:CN116110074A
公开(公告)日:2023-05-12
申请号:CN202211537300.4
申请日:2022-12-01
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V10/82 , G06V10/774
Abstract: 本发明公开了一种基于图神经网络的动态小股行人识别方法,将数据集中图片进行预处理,使用特征匹配的方法将图片中背景的像素点进行匹配,通过像素点截取相应的图片,得到图片的背景特征;对行人进行动态筛选,排除不为同一组的行人,同时构建图结构;将得到的背景特征加入构建的图结构,得到新的图结构;采用多头注意力的图上下文信息感知传递的方法,寻找最优模型;解决了特征提取过程中受到局部扰动而特征不鲁棒的问题,提高了行人再识别的准确率;基于该算法设计的动态小股行人重识别方法,能够快速获取想要查找的行人以及小股行人。
-
公开(公告)号:CN118072361A
公开(公告)日:2024-05-24
申请号:CN202410496315.3
申请日:2024-04-24
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V20/52 , G06V20/40 , G06V10/40 , G06V10/74 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06V10/62
Abstract: 本发明公开了一种基于随机游走的小股行人重识别方法及系统,所述方法包括以下步骤:(1)捕捉到的行人视频并进行预处理;(2)将图片通过单目估计算法得到深度图,并对单人深度图计算深度平均值;通过vision transformer得到行人特征,将行人特征通过按深度平均值大小依次构建成具有不同节点的图结构;(3)通过随机游走模块对图进行重构,每添加一个图节点计算该探针图像和图库图像之间的亲和力分数,并计算该组成员的亲和力分数平均值,得到亲和力分数平均值最高的图;(4)将重构的图在图间通过组上下文信息传递,更新图节点特征,结合注意力机制,进行组匹配,预测两组的匹配得分;本发明节约了大量的人力成本和时间成本。
-
公开(公告)号:CN118609173A
公开(公告)日:2024-09-06
申请号:CN202411089728.6
申请日:2024-08-09
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V10/143 , G06V10/40 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/084
Abstract: 本发明提出了一种基于中间模态学习的跨模态行人重识别方法及系统。其中,行人重识别方法包括如下步骤:获取成对的可见光原始图像和红外原始图像;提取可见光原始图像、红外原始图像的中间模态,得到可见光中间模态、红外中间模态;通过空间注意力和通道注意力优化所述可见光原始图像、红外原始图像、可见光中间模态、红外中间模态,输出优化结果;建立损失约束限制所述优化结果,输出识别结果。本发明提出了一个主要由中间模态图片生成器、双重注意力组合块以及特征损失约束组成的中间模态学习网络,具有精度高、还原度高的特点。
-
公开(公告)号:CN118072361B
公开(公告)日:2024-07-12
申请号:CN202410496315.3
申请日:2024-04-24
Applicant: 南京信息工程大学
IPC: G06V40/10 , G06V20/52 , G06V20/40 , G06V10/40 , G06V10/74 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06V10/62
Abstract: 本发明公开了一种基于随机游走的小股行人重识别方法及系统,所述方法包括以下步骤:(1)捕捉到的行人视频并进行预处理;(2)将图片通过单目估计算法得到深度图,并对单人深度图计算深度平均值;通过vision transformer得到行人特征,将行人特征通过按深度平均值大小依次构建成具有不同节点的图结构;(3)通过随机游走模块对图进行重构,每添加一个图节点计算该探针图像和图库图像之间的亲和力分数,并计算该组成员的亲和力分数平均值,得到亲和力分数平均值最高的图;(4)将重构的图在图间通过组上下文信息传递,更新图节点特征,结合注意力机制,进行组匹配,预测两组的匹配得分;本发明节约了大量的人力成本和时间成本。
-
-
-