-
公开(公告)号:CN114486399A
公开(公告)日:2022-05-13
申请号:CN202210108010.1
申请日:2022-01-28
Applicant: 华南理工大学 , 生态环境部华南环境科学研究所
Abstract: 本发明公开了一种垃圾焚烧飞灰自动采样装置,并联设置于烟道外侧,包括飞灰采集罐、烟气取样管道、及烟气回流管道;烟气取样管道一端与烟道中烟气上游连通,另一端与飞灰采集罐上端相连;烟气回流管道一端与烟道中烟气下游连通,另一端与飞灰采集罐下端相连;三者组成采样气道,使得烟气流经飞灰采集罐,并捕获烟气中飞灰样品,该装置还设有进气管道、样品输送管道,分别连接于飞灰采集罐底部和顶部,且可通过电脑控制烟气取样管道和样品输送管道中阀门的开或关,实现自动采样和自动输样;一种垃圾焚烧飞灰的检测方法,采用该检测方法,获取的待测样品代表性强,可减少抽检次数,同时提高检测准确性。
-
公开(公告)号:CN116429646A
公开(公告)日:2023-07-14
申请号:CN202310286063.7
申请日:2023-03-23
Applicant: 华南理工大学 , 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所)
IPC: G01N15/02 , G06Q10/0635
Abstract: 本发明公开了一种快速评估飞灰重金属超标风险的方法及系统,该方法通过获取的飞灰各等级质量占比即可预测重金属浸出值,与预设阈值进行比较即可快速判断出终端飞灰是否超标,若判断终端飞灰重金属浸出超标则后期螯合应增加螯合剂用量,具体的依据核算的重金属浸出值进行调整;若判断终端飞灰重金属没有浸出超标,提示该元素在此处没有浸出风险。本发明提供的评估方法及系统能够通过收集少量现场随机采集的飞灰,经过物理分级后预测重金属的浸出值,解决了检测飞灰重金属浸出值所需时间长、消耗样品多的问题,且能够快速及时调整螯合剂的添加量。
-
公开(公告)号:CN113217922B
公开(公告)日:2022-02-18
申请号:CN202110211589.X
申请日:2021-02-25
Applicant: 华南理工大学 , 生态环境部华南环境科学研究所
IPC: F23G5/50
Abstract: 本发明公开了一种垃圾焚烧NOx源头产生量预测方法与系统。所述方法包括步骤:(1)获取焚烧厂初始的燃料N转化路径图;(2)检测收到基垃圾元素成分和工业化分析成分,计算H/N元素质量含量比值R1=h/n、以及固定碳与可燃分的比值R2=F/(V+F);(3)根据H/N元素质量含量比值校正挥发分N转化为NOx的转化率A,根据固定碳与可燃分的比值校正NOx转化为N2的转化率B;(4)计算燃料N转化为NOx的转化率η、NOx产生浓度C。所述系统包括:燃料N转化路径图加载模块、校正模块、以及预测模块。本发明预测的燃料N转化率与其所对应的NOx产生量取值范围更加可靠,主要用于分析其变化趋势所用。
-
公开(公告)号:CN113217922A
公开(公告)日:2021-08-06
申请号:CN202110211589.X
申请日:2021-02-25
Applicant: 华南理工大学 , 生态环境部华南环境科学研究所
IPC: F23G5/50
Abstract: 本发明公开了一种垃圾焚烧NOx源头产生量预测方法与系统。所述方法包括步骤:(1)获取焚烧厂初始的燃料N转化路径图;(2)检测收到基垃圾元素成分和工业化分析成分,计算H/N元素质量含量比值R1=h/n、以及固定碳与可燃分的比值R2=F/(V+F);(3)根据H/N元素质量含量比值校正挥发分N转化为NOx的转化率A,根据固定碳与可燃分的比值校正NOx转化为N2的转化率B;(4)计算燃料N转化为NOx的转化率η、NOx产生浓度C。所述系统包括:燃料N转化路径图加载模块、校正模块、以及预测模块。本发明预测的燃料N转化率与其所对应的NOx产生量取值范围更加可靠,主要用于分析其变化趋势所用。
-
公开(公告)号:CN114486399B
公开(公告)日:2023-09-19
申请号:CN202210108010.1
申请日:2022-01-28
Applicant: 华南理工大学 , 生态环境部华南环境科学研究所
Abstract: 本发明公开了一种垃圾焚烧飞灰自动采样装置,并联设置于烟道外侧,包括飞灰采集罐、烟气取样管道、及烟气回流管道;烟气取样管道一端与烟道中烟气上游连通,另一端与飞灰采集罐上端相连;烟气回流管道一端与烟道中烟气下游连通,另一端与飞灰采集罐下端相连;三者组成采样气道,使得烟气流经飞灰采集罐,并捕获烟气中飞灰样品,该装置还设有进气管道、样品输送管道,分别连接于飞灰采集罐底部和顶部,且可通过电脑控制烟气取样管道和样品输送管道中阀门的开或关,实现自动采样和自动输样;一种垃圾焚烧飞灰的检测方法,采用该检测方法,获取的待测样品代表性强,可减少抽检次数,同时提高检测准确性。
-
公开(公告)号:CN119566044A
公开(公告)日:2025-03-07
申请号:CN202411730195.5
申请日:2024-11-29
Applicant: 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所)
IPC: B09B3/70 , G01G19/393 , B09B101/30
Abstract: 本发明公开了焚烧飞灰收集处理系统,包括螯合混炼机和收集装置,螯合混炼机具有第一进料口、第二进料口和出料装置;收集装置用于收集螯合产物;力传感器A安装在螯合混炼机上,用于获得重量差Δm=m1‑m2‑m3,从螯合混炼机出来的螯合产物的重量为m1,进入螯合混炼机内的焚烧飞灰和螯合剂的重量分别为m2和m3。本发明根据历史Δm的一致性,判断所述螯合混炼机是否处于正常状态,当螯合混炼机正常工作情况下,所述收集装置的容积根据预计的出料量即m2与m3的和确定。判断螯合混炼机内的螯合产物的成团黏连、出料口堵塞等情况,相应调整收集装置,避免出料量与预计不符引起的扬撒和泄露。
-
公开(公告)号:CN116656368A
公开(公告)日:2023-08-29
申请号:CN202310615152.1
申请日:2023-05-29
Applicant: 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) , 中南大学
Abstract: 本发明公开了高效固化镉和锌的有机稳定化材料及其制备方法和应用,所述有机稳定化材料为羧基‑铁基复合改性生物炭,所述羧基‑铁基复合改性生物炭,比表面积在90m2/g以上,按照质量分数其表面负载66%~95%氧元素、14%~30%铁元素,其中氧元素以羧基型式负载,铁元素以铁基型式负载;所述羧基包括‑COOH和‑COH,所述铁基型式包括FeOOH和Fe3O4。该有机稳定化材料对有效态的镉和锌能够降低40%以上,具有很好的固化稳定作用,能够用于镉和/或锌污染土壤的修复。本发明提供的高效固化镉和锌的有机稳定化材料的制备方法,制备工艺简单易操作,在常温条件下即可进行。
-
公开(公告)号:CN113843255A
公开(公告)日:2021-12-28
申请号:CN202111066798.6
申请日:2021-09-13
Applicant: 生态环境部华南环境科学研究所 , 广州环保投资集团有限公司
Abstract: 本发明公开了一种生活垃圾焚烧飞灰的分段式稳定化处理方法及系统。方法包括以下步骤:取烟气脱酸产生的焚烧飞灰,水洗后调节含水率低于50%,通入CO2进行矿化稳定;取布袋除尘产生的焚烧飞灰,调节含水率低于30%且pH值在6.5至8.5之间,添加螯合剂进行螯合稳定。系统包括:矿化稳定化装置和螯合稳定化装置;所述矿化稳定装置与烟气脱酸塔相连,用于收集烟气脱酸产生的焚烧飞灰进行矿化稳定;所述螯合稳定化装置与布袋除尘器相连,用于收集布袋除尘产生的焚烧飞灰进行螯合稳定。本发明针对飞灰的性质、重量调节药剂用量,针对性强、稳定化效果好,同时消耗的pH值调节剂和金属螯合剂大幅减小,经济成本降低。
-
公开(公告)号:CN118965221A
公开(公告)日:2024-11-15
申请号:CN202411000021.3
申请日:2024-07-24
Applicant: 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) , 浙江富春江环保科技研究有限公司
IPC: G06F18/2433 , G06F18/25 , G06F18/241
Abstract: 本发明公开了一种垃圾焚烧厂自动监测数据异常检测方法及系统,包括以下步骤:(1)收集垃圾焚烧厂自动监测系统采集的原始垃圾焚烧厂自动监测数据;(2)将原始垃圾焚烧厂自动监测数据,按照粒度时间段取有效数据的平均均值作为各个垃圾焚烧厂自动监测参数的粒度均值数据;(3)对各个垃圾焚烧厂自动监测参数的粒度均值数据,分别进行空值检测、恒值检测、以及局部异常值检测,根据检测结果判断垃圾焚烧厂自动监测的工作状态。本发明应用于垃圾焚烧厂自动监测系统,在不增加设备且及计算代价较小的前提下,通过对原始垃圾焚烧厂自动监测数据进行粒度分析,判断垃圾焚烧厂自动监测系统工作状态。
-
公开(公告)号:CN118838286A
公开(公告)日:2024-10-25
申请号:CN202410913481.9
申请日:2024-07-09
Applicant: 广州环保投资集团有限公司 , 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所)
IPC: G05B19/418
Abstract: 本发明涉及一种基于氮氧化物预测排放浓度的实时动态反控DCS的系统,其包括数据获取模块、污染物预测模块、环保耗材自适应投加模块、数据传输反控模块;所述数据获取模块,用于按照时间序列的预设频率从垃圾焚烧生产线的DCS系统中获取并保存DCS自动监测数据;所述自动监测数据,包括垃圾焚烧生产线工况参数和污染物排放浓度;所述污染物预测模块,用于依据获取的DCS自动监测数据,按照内置的污染物预测模型计算,预测氮氧化物的排放浓度,并保存,供环保耗材自适应投加模块调用;所述环保耗材自适应投加模块,用于根据污染物预测模块预测的氮氧化物排放浓度,依据内置的数学模型计算对应的环保耗材用量,并保存,供数据传输反控模块调用;所述数据传输反控模块,用于获取保存的最新环保耗材用量,并传输至DCS系统,实时动态控制DCS系统对相应的脱硝设备进行调控。本系统能够依据焚烧工况实时动态及时准确调整环保耗材脱硝剂的用量,可实现对DCS系统的实时动态反控,利于避免氮氧化物排放超标或过度投加环保耗材。
-
-
-
-
-
-
-
-
-