-
公开(公告)号:CN115620265B
公开(公告)日:2023-04-18
申请号:CN202211631506.3
申请日:2022-12-19
Applicant: 华南理工大学 , 株洲中车时代软件技术有限公司
IPC: G06V20/58 , G06N3/0464 , G06N3/048 , G06N3/084 , G06N3/09 , G06V10/44 , G06V10/764 , G06V10/82 , G06V30/146 , G06V30/18 , G06V30/19
Abstract: 本发明公开了基于深度学习的机车标志牌信息智能识别方法,包括以下步骤:获得机车标志牌图像数据;对所述的机车标志牌图像进行预分类;根据预分类结果,采用对应的方法进行图像文本识别及分类;获得所述的机车标志牌图像的具体类别及文本信息;所述的预分类结果包括单一文本标志牌、单行文本标志牌、单列文本标志牌和多文本标志牌。本发明实施例实现了机车线路标志牌类别信息与文本信息的智能识别,通过标志牌预分类算法,对不同的预分类采用不同的处理方法,提升了对机车标志牌的识别速度与复杂标志牌的识别精度,并通过融合文本与图像的多模态特征,实现了高精度的具体分类识别和文本信息提取。
-
公开(公告)号:CN115620265A
公开(公告)日:2023-01-17
申请号:CN202211631506.3
申请日:2022-12-19
Applicant: 华南理工大学 , 株洲中车时代软件技术有限公司
IPC: G06V20/58 , G06N3/04 , G06N3/08 , G06V10/44 , G06V10/764 , G06V10/82 , G06V30/146 , G06V30/18 , G06V30/19
Abstract: 本发明公开了基于深度学习的机车标志牌信息智能识别方法,包括以下步骤:获得机车标志牌图像数据;对所述的机车标志牌图像进行预分类;根据预分类结果,采用对应的方法进行图像文本识别及分类;获得所述的机车标志牌图像的具体类别及文本信息;所述的预分类结果包括单一文本标志牌、单行文本标志牌、单列文本标志牌和多文本标志牌。本发明实施例实现了机车线路标志牌类别信息与文本信息的智能识别,通过标志牌预分类算法,对不同的预分类采用不同的处理方法,提升了对机车标志牌的识别速度与复杂标志牌的识别精度,并通过融合文本与图像的多模态特征,实现了高精度的具体分类识别和文本信息提取。
-
公开(公告)号:CN117743652A
公开(公告)日:2024-03-22
申请号:CN202311732260.3
申请日:2023-12-16
Applicant: 华南理工大学
IPC: G06F16/9032 , G06F16/242 , G06F16/2452 , G06F16/2455 , G06F16/28 , G06F16/901 , G06F40/279 , G06F40/253 , G06F40/30 , G06N3/0895 , G06N5/02 , G06N5/04
Abstract: 本发明公开了基于深度学习的弱监督时序图谱问答方法,包括以下步骤:步骤1,获得时序图谱数据集;步骤2,利用时序图谱数据集通过模板填充与有效性验证生成对应的数据库查询语句;步骤3,利用生成的数据库查询语句训练自然语言转数据库查询语句模型;步骤4,通过自然语言转数据库查询语句模型推理获得数据库查询语句,并根据该数据库查询语句进行数据库查询获得最终答案;使本发明的答案在维持较高的可解释性的同时,极大地降低了模型训练过程中对数据的标注要求。
-
公开(公告)号:CN118093956A
公开(公告)日:2024-05-28
申请号:CN202311732230.2
申请日:2023-12-16
Applicant: 华南理工大学
IPC: G06F16/9032 , G06F16/901 , G06F16/28 , G06F16/2455 , G06F16/2458 , G06F16/903 , G06F40/279 , G06F40/216 , G06N3/0442 , G06N5/02 , G06N5/04
Abstract: 本发明公开了一种用于多粒度时序知识图谱的问答方法,包括以下步骤:步骤1,对数据集进行预处理得到实体、关系、事件实体和时间;步骤2,利用数据集训练实体抽取模型和关系抽取模型得到更精准的实体和关系;步骤3,利用得到的实体、关系、事件实体和时间进行图谱查询得到最终的候选答案集;本发明中用于多粒度时序知识图谱的问答方法适应动态环境下的多粒度时序知识图谱问答场景,在多粒度时间和多时序约束下具有高精度问答性能,且该方法保证了推理效率,具有良好的泛化性,对不同类型的问题均有良好的性能。
-
公开(公告)号:CN118093956B
公开(公告)日:2024-12-13
申请号:CN202311732230.2
申请日:2023-12-16
Applicant: 华南理工大学
IPC: G06F16/9032 , G06F16/901 , G06F16/28 , G06F16/2455 , G06F16/2458 , G06F16/903 , G06F40/279 , G06F40/216 , G06N3/0442 , G06N5/02 , G06N5/04
Abstract: 本发明公开了一种用于多粒度时序知识图谱的问答方法,包括以下步骤:步骤1,对数据集进行预处理得到实体、关系、事件实体和时间;步骤2,利用数据集训练实体抽取模型和关系抽取模型得到更精准的实体和关系;步骤3,利用得到的实体、关系、事件实体和时间进行图谱查询得到最终的候选答案集;本发明中用于多粒度时序知识图谱的问答方法适应动态环境下的多粒度时序知识图谱问答场景,在多粒度时间和多时序约束下具有高精度问答性能,且该方法保证了推理效率,具有良好的泛化性,对不同类型的问题均有良好的性能。
-
公开(公告)号:CN117743652B
公开(公告)日:2025-01-10
申请号:CN202311732260.3
申请日:2023-12-16
Applicant: 华南理工大学
IPC: G06F16/9032 , G06F16/242 , G06F16/2452 , G06F16/2455 , G06F16/28 , G06F16/901 , G06F40/279 , G06F40/253 , G06F40/30 , G06N3/0895 , G06N5/02 , G06N5/04
Abstract: 本发明公开了基于深度学习的弱监督时序图谱问答方法,包括以下步骤:步骤1,获得时序图谱数据集;步骤2,利用时序图谱数据集通过模板填充与有效性验证生成对应的数据库查询语句;步骤3,利用生成的数据库查询语句训练自然语言转数据库查询语句模型;步骤4,通过自然语言转数据库查询语句模型推理获得数据库查询语句,并根据该数据库查询语句进行数据库查询获得最终答案;使本发明的答案在维持较高的可解释性的同时,极大地降低了模型训练过程中对数据的标注要求。
-
-
-
-
-