一种碳纳米管导电涂层集流体及其制备工艺

    公开(公告)号:CN105932297A

    公开(公告)日:2016-09-07

    申请号:CN201610410998.1

    申请日:2016-06-12

    CPC classification number: H01M4/667 H01M4/0404 H01M4/625 H01M4/661 H01M4/663

    Abstract: 本发明公开了一种碳纳米管导电涂层集流体,包括金属集流体和碳纳米管导电涂层,所述碳纳米管导电涂层涂覆在金属集流体表面。所述碳纳米管导电涂层的厚度为1~50μm,表面设置有网状微裂纹结构以及粗糙多孔结构。本发明还提供了一种碳纳米管导电涂层集流体制备工艺。本发明的碳纳米管导电涂层为电极提供了很好的导电网络,对于导电性能较差的电极材料尤为明显,同时,通过制备分散效果不同的导电浆料使碳纳米管导电涂层在烘干后表面形成密集的微裂纹,电极涂层可嵌在微裂纹之间,极大的增大了电极涂层与导电涂层之间的接触面积,提高了与集流体之间的结合力,降低了电池的内阻,提高了电池的寿命以及高倍率性能。

    一种碳纳米管导电涂层集流体及其制备工艺

    公开(公告)号:CN105932297B

    公开(公告)日:2018-10-09

    申请号:CN201610410998.1

    申请日:2016-06-12

    Abstract: 本发明公开了一种碳纳米管导电涂层集流体,包括金属集流体和碳纳米管导电涂层,所述碳纳米管导电涂层涂覆在金属集流体表面。所述碳纳米管导电涂层的厚度为1~50μm,表面设置有网状微裂纹结构以及粗糙多孔结构。本发明还提供了一种碳纳米管导电涂层集流体制备工艺。本发明的碳纳米管导电涂层为电极提供了很好的导电网络,对于导电性能较差的电极材料尤为明显,同时,通过制备分散效果不同的导电浆料使碳纳米管导电涂层在烘干后表面形成密集的微裂纹,电极涂层可嵌在微裂纹之间,极大的增大了电极涂层与导电涂层之间的接触面积,提高了与集流体之间的结合力,降低了电池的内阻,提高了电池的寿命以及高倍率性能。

    用于直接甲醇燃料电池的超疏水多孔流场板及其制备方法

    公开(公告)号:CN105304916A

    公开(公告)日:2016-02-03

    申请号:CN201510597657.5

    申请日:2015-09-20

    CPC classification number: H01M8/0258

    Abstract: 本发明公开了一种用于直接甲醇燃料电池的超疏水多孔流场板,所述超疏水多孔流场板分别设置在直接甲醇燃料电池阴极侧集电板中间的镂空部和阳极侧集电板中间的镂空部,其疏水表面的去离子水稳定接触角大于155°,孔隙率为70%~80%,厚度为1~3mm。本发明还提供了一种所述超疏水多孔流场板的制备方法,包括步骤:(1)铜纤维毡表面预处理;(2)碱辅助表面氧化工艺;(3)固相烧结;(4)低表面能溶液修饰工艺。本发明能够实现阳极侧直接阻碍甲醇穿透,阴极侧实现“水反补”,使得阴极侧产生的水能够反补会阳极侧,防止“水淹”,间接阻碍甲醇穿透,从而提高电池性能,同时工艺简单,表面强度高,有效防止出现疏水表层脱落现象。

    用于直接甲醇燃料电池的超疏水多孔流场板及其制备方法

    公开(公告)号:CN105304916B

    公开(公告)日:2017-09-26

    申请号:CN201510597657.5

    申请日:2015-09-20

    Abstract: 本发明公开了一种用于直接甲醇燃料电池的超疏水多孔流场板,所述超疏水多孔流场板分别设置在直接甲醇燃料电池阴极侧集电板中间的镂空部和阳极侧集电板中间的镂空部,其疏水表面的去离子水稳定接触角大于155°,孔隙率为70%~80%,厚度为1~3mm。本发明还提供了一种所述超疏水多孔流场板的制备方法,包括步骤:(1)铜纤维毡表面预处理;(2)碱辅助表面氧化工艺;(3)固相烧结;(4)低表面能溶液修饰工艺。本发明能够实现阳极侧直接阻碍甲醇穿透,阴极侧实现“水反补”,使得阴极侧产生的水能够反补会阳极侧,防止“水淹”,间接阻碍甲醇穿透,从而提高电池性能,同时工艺简单,表面强度高,有效防止出现疏水表层脱落现象。

    用于直接甲醇燃料电池的超疏水多孔流场板

    公开(公告)号:CN204991853U

    公开(公告)日:2016-01-20

    申请号:CN201520726124.8

    申请日:2015-09-20

    Abstract: 本实用新型公开了一种用于直接甲醇燃料电池的超疏水多孔流场板,所述超疏水多孔流场板分别设置在直接甲醇燃料电池阴极侧集电板中间的镂空部和阳极侧集电板中间的镂空部,其疏水表面的去离子水稳定接触角大于155°,孔隙率为70%~80%,厚度为1~3mm。本实用新型能够实现阳极侧直接阻碍甲醇穿透,阴极侧实现“水反补”,使得阴极侧产生的水能够反补会阳极侧,防止“水淹”,间接阻碍甲醇穿透,从而提高电池性能。

    一种碳纳米管导电涂层集流体

    公开(公告)号:CN205723768U

    公开(公告)日:2016-11-23

    申请号:CN201620577091.X

    申请日:2016-06-12

    Abstract: 本实用新型公开了一种碳纳米管导电涂层集流体,包括金属集流体和碳纳米管导电涂层,所述碳纳米管导电涂层涂覆在金属集流体表面。所述碳纳米管导电涂层的厚度为1~50μm,表面设置有网状微裂纹结构以及粗糙多孔结构。本实用新型的碳纳米管导电涂层为电极提供了很好的导电网络,对于导电性能较差的电极材料尤为明显,同时,通过制备分散效果不同的导电浆料使碳纳米管导电涂层在烘干后表面形成密集的微裂纹,电极涂层可嵌在微裂纹之间,极大的增大了电极涂层与导电涂层之间的接触面积,提高了与集流体之间的结合力,降低了电池的内阻,提高了电池的寿命以及高倍率性能。

Patent Agency Ranking