-
公开(公告)号:CN108921602A
公开(公告)日:2018-11-30
申请号:CN201810642096.X
申请日:2018-06-21
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于集成神经网络的用户购买行为预测方法,包括步骤:1)对用户行为历史记录进行特征提取和采样,获得样本集合T1;2)利用Boosting集成方法形成分类器C1,对样本集合T1进行分类处理和特征集成,得到新的样本集合T2;3)构建神经网络的基本结构,利用基因算法对神经网络的参数进行启发式搜索,形成集成神经网络分类器C2;4)利用分类器C2对样本集合T2进行分类处理,得到新的样本集合T3;5)利用Bagging集成方法形成分类器C3,对样本集合T3进行分类处理,得到用户会产生购买行为的物品列表,作为对于用户购买行为的预测结果。本发明解决传统方法分类效果差、泛化性差、在大数据情景下效率低下等问题。
-
公开(公告)号:CN108921602B
公开(公告)日:2021-12-21
申请号:CN201810642096.X
申请日:2018-06-21
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于集成神经网络的用户购买行为预测方法,包括步骤:1)对用户行为历史记录进行特征提取和采样,获得样本集合T1;2)利用Boosting集成方法形成分类器C1,对样本集合T1进行分类处理和特征集成,得到新的样本集合T2;3)构建神经网络的基本结构,利用基因算法对神经网络的参数进行启发式搜索,形成集成神经网络分类器C2;4)利用分类器C2对样本集合T2进行分类处理,得到新的样本集合T3;5)利用Bagging集成方法形成分类器C3,对样本集合T3进行分类处理,得到用户会产生购买行为的物品列表,作为对于用户购买行为的预测结果。本发明解决传统方法分类效果差、泛化性差、在大数据情景下效率低下等问题。
-