基于长短时记忆网络的无人驾驶汽车学习型预测控制方法

    公开(公告)号:CN118025223B

    公开(公告)日:2024-10-22

    申请号:CN202410055698.0

    申请日:2024-01-15

    Abstract: 本发明涉及控制技术领域,为基于长短时记忆网络的无人驾驶汽车学习型预测控制方法,包括:结合帕采卡轮胎模型建立基于阿克曼驾驶汽车模型的非线性车辆动力学模型;基于长短时记忆网络对非线性车辆动力学模型进行训练,得到优化的非线性车辆动力学模型;使用模型预测控制MPC方法作为优化的车辆动力学模型控制策略,利用模型预测控制MPC方法的最优化问题进行滚动优化;使用梯度下降法求解在线最优控制的最优化问题输出最优控制序列,将最优控制序列中的第一个元素作为下一时刻的自动驾驶汽车的实际控制输入量。本发明通过准确的模型建立和优化控制策略可以减少事故的风险,并使车辆能够适应不同路况和驾驶需求,可以提升自动驾驶汽车的安全性能。

    基于长短时记忆网络的无人驾驶汽车学习型预测控制方法

    公开(公告)号:CN118025223A

    公开(公告)日:2024-05-14

    申请号:CN202410055698.0

    申请日:2024-01-15

    Abstract: 本发明涉及控制技术领域,为基于长短时记忆网络的无人驾驶汽车学习型预测控制方法,包括:结合帕采卡轮胎模型建立基于阿克曼驾驶汽车模型的非线性车辆动力学模型;基于长短时记忆网络对非线性车辆动力学模型进行训练,得到优化的非线性车辆动力学模型;使用模型预测控制MPC方法作为优化的车辆动力学模型控制策略,利用模型预测控制MPC方法的最优化问题进行滚动优化;使用梯度下降法求解在线最优控制的最优化问题输出最优控制序列,将最优控制序列中的第一个元素作为下一时刻的自动驾驶汽车的实际控制输入量。本发明通过准确的模型建立和优化控制策略可以减少事故的风险,并使车辆能够适应不同路况和驾驶需求,可以提升自动驾驶汽车的安全性能。

Patent Agency Ranking