-
公开(公告)号:CN113405919A
公开(公告)日:2021-09-17
申请号:CN202110593288.8
申请日:2021-05-28
Applicant: 华南理工大学
IPC: G01N3/18
Abstract: 本发明公开了基于等温应力和相变测定碳化物析出动力学曲线的方法。所述方法是在Gleeble‑3800热模拟试验机上先通过测定合金钢等温过程中的等温屈服强度和等温相变动力学曲线,然后基于等温屈服强度增量值来确定碳化物等温析出。等温屈服强度增量法结合测定出的等温相变时间,可以有效避开合金钢碳化物等温析出过程中相变对碳化物析出开始点测定的干扰,并能揭示碳化物析出过程和相变的相互作用。此外,本方法操作简单且测定的等温屈服强度值能够直观的反应等温过程中碳化物析出导致强度增加的量,对改进和优化合金钢热处理工艺参数以获取最佳力学性能提供很好地指导作用。
-
公开(公告)号:CN113405919B
公开(公告)日:2022-03-29
申请号:CN202110593288.8
申请日:2021-05-28
Applicant: 华南理工大学
IPC: G01N3/18
Abstract: 本发明公开了基于等温应力和相变测定碳化物析出动力学曲线的方法。所述方法是在Gleeble‑3800热模拟试验机上先通过测定合金钢等温过程中的等温屈服强度和等温相变动力学曲线,然后基于等温屈服强度增量值来确定碳化物等温析出。等温屈服强度增量法结合测定出的等温相变时间,可以有效避开合金钢碳化物等温析出过程中相变对碳化物析出开始点测定的干扰,并能揭示碳化物析出过程和相变的相互作用。此外,本方法操作简单且测定的等温屈服强度值能够直观的反应等温过程中碳化物析出导致强度增加的量,对改进和优化合金钢热处理工艺参数以获取最佳力学性能提供很好地指导作用。
-
公开(公告)号:CN113234988A
公开(公告)日:2021-08-10
申请号:CN202110408062.6
申请日:2021-04-15
Applicant: 华南理工大学
IPC: C22C33/06 , C21C5/30 , C21C7/00 , C21C7/06 , C21C7/064 , C21C7/10 , C21D1/18 , C21D6/00 , C21D8/02 , C21D9/00 , C22C38/02 , C22C38/04 , C22C38/42 , C22C38/50
Abstract: 本发明公开了一种在线淬火生产屈服强度700MPa级耐候钢的方法及其产物,包括步骤:铁水预处理、转炉冶炼、RH炉精炼、LF炉精炼、板坯连铸、冷却到室温后铸坯表面扒皮、加热炉奥氏体化、高压水除磷、再结晶区控轧、超快速冷却淬火、卷取、空冷,其中超快速冷却淬火的冷却速率为30~80℃/s,淬火终止温度为250~400℃。本发明通过合金化设计生产的耐候钢具有细小的贝氏体组织,屈服强度≥700MPa,断裂总延伸率≥20%,‑20℃冲击功≥180J,电化学腐蚀电流密度≤2.0×10‑5A/cm2,腐蚀速率≤3.6×10‑3mm/y,具有良好的强韧配比及耐候性。
-
公开(公告)号:CN116445813A
公开(公告)日:2023-07-18
申请号:CN202310265429.2
申请日:2023-03-16
Applicant: 华南理工大学
Abstract: 本发明公开了一种抗拉强度1000MPa级耐候钢及其生产方法。在传统低碳耐候钢基础上优化添加Cu、Ni、Ti,细化原始奥氏体晶粒,促进低温转变得到性能优异的贝氏体和马氏体混合组织,热轧过程中得到细小弥散分布的TiC析出,通过再加热奥氏体化和再结晶控制轧制和在线淬火过程缩短了生产流程。淬火冷却速率为30~40℃/s,淬火终止温度为200~300℃。本发明生产的耐候钢具有细小的贝氏体和马氏体组织,屈服强度≥900MPa,抗拉强度≥1000MPa,断裂总延伸率≥18%,‑20℃冲击功≥180J,电化学腐蚀电流密度≤3.82×10‑5A/cm2,腐蚀速率≤69μm/a,具有良好的综合力学性能。
-
公开(公告)号:CN116445684A
公开(公告)日:2023-07-18
申请号:CN202310256601.8
申请日:2023-03-16
Applicant: 华南理工大学
IPC: C21C7/064 , C21C7/10 , C21C7/00 , B22D11/115 , B22D11/12 , C22C38/02 , C22C38/04 , C22C38/42 , C22C38/50
Abstract: 本发明公开了一种40~80mm高强耐候钢厚板及其生产方法。包括步骤:铁水经过脱硫处理和转炉冶炼,再结合RH炉精炼与LF炉精炼得到纯净度高和合适的化学成分。低的过热度和恒定拉速控制保障了连铸坯内部质量,减少了裂纹和缩孔。通过再加热奥氏体化和再结晶控制轧制和在线淬火过程缩短了生产流程。最后堆垛冷却得到性能稳定的高强耐候钢厚板,屈服强度≥700MPa,抗拉强度≥900MPa,‑20℃冲击功≥200J,腐蚀电流密度≤2.8×10‑6A/cm2,腐蚀速率≤73.9μm/a,具有良好的综合性能。
-
公开(公告)号:CN113201682B
公开(公告)日:2022-05-24
申请号:CN202110407900.8
申请日:2021-04-15
Applicant: 华南理工大学
Abstract: 本发明公开了一种贝氏体耐候钢及其生产方法,包括步骤:铁水预处理、转炉冶炼、RH炉精炼、LF炉精炼、板坯连铸、冷却到室温后铸坯表面扒皮、加热炉奥氏体化、高压水除磷、再结晶区控轧、超快速冷却淬火、卷取、中温弛豫;其中,超快速冷却淬火的冷却速率为15~40℃/s,淬火终止温度为250~350℃。本发明通过合金化设计生产的贝氏体耐候钢具有细小的贝氏体组织,屈服强度≥800MPa,断裂总延伸率≥20%,‑20℃冲击功≥100J,电化学腐蚀电流密度≤1.70×10‑5A/cm^2,腐蚀速率≤3.20×10‑3mm/y,具有良好的强韧配比及耐候性。
-
公开(公告)号:CN113234988B
公开(公告)日:2022-06-10
申请号:CN202110408062.6
申请日:2021-04-15
Applicant: 华南理工大学
IPC: C22C33/06 , C21C5/30 , C21C7/00 , C21C7/06 , C21C7/064 , C21C7/10 , C21D1/18 , C21D6/00 , C21D8/02 , C21D9/00 , C22C38/02 , C22C38/04 , C22C38/42 , C22C38/50
Abstract: 本发明公开了一种在线淬火生产屈服强度700MPa级耐候钢的方法及其产物,包括步骤:铁水预处理、转炉冶炼、RH炉精炼、LF炉精炼、板坯连铸、冷却到室温后铸坯表面扒皮、加热炉奥氏体化、高压水除磷、再结晶区控轧、超快速冷却淬火、卷取、空冷,其中超快速冷却淬火的冷却速率为30~80℃/s,淬火终止温度为250~400℃。本发明通过合金化设计生产的耐候钢具有细小的贝氏体组织,屈服强度≥700MPa,断裂总延伸率≥20%,‑20℃冲击功≥180J,电化学腐蚀电流密度≤2.0×10‑5A/cm2,腐蚀速率≤3.6×10‑3mm/y,具有良好的强韧配比及耐候性。
-
公开(公告)号:CN113201682A
公开(公告)日:2021-08-03
申请号:CN202110407900.8
申请日:2021-04-15
Applicant: 华南理工大学
Abstract: 本发明公开了一种贝氏体耐候钢及其生产方法,包括步骤:铁水预处理、转炉冶炼、RH炉精炼、LF炉精炼、板坯连铸、冷却到室温后铸坯表面扒皮、加热炉奥氏体化、高压水除磷、再结晶区控轧、超快速冷却淬火、卷取、中温弛豫;其中,超快速冷却淬火的冷却速率为15~40℃/s,淬火终止温度为250~350℃。本发明通过合金化设计生产的贝氏体耐候钢具有细小的贝氏体组织,屈服强度≥800MPa,断裂总延伸率≥20%,‑20℃冲击功≥100J,电化学腐蚀电流密度≤1.70×10‑5A/cm^2,腐蚀速率≤3.20×10‑3mm/y,具有良好的强韧配比及耐候性。
-
-
-
-
-
-
-