一种基于融合语义聚类的文本自动摘要方法

    公开(公告)号:CN108197111A

    公开(公告)日:2018-06-22

    申请号:CN201810020999.4

    申请日:2018-01-10

    Abstract: 本发明公开了一种基于融合语义聚类的文本自动摘要方法,包括:文本预处理步骤,对原始文档进行预处理,并统计关键词在文本中的词频信息;权重计算步骤,融合局部权重,全局权重和引入相关权重来确定关键词在句子中的贡献度;语义分析步骤,将文本矩阵进行奇异值分解,得到语义分析模型,以此计算每个句子的语义向量;聚类步骤,对计算的句子语义向量在语义空间中通过聚类算法得到K个句子簇;句子选择步骤,在每一个句子簇中计算句子权重,根据排名来挑选前n个句子组成摘要,并去除冗余。本发明简单实用,对文本进行特征表示,融入上下文的语义联系,更充分的显示句子之间和词语之间的共现关系,生成的摘要更能契合文本的主题思想。

    一种基于多传感器数据融合的跌倒检测方法及装置

    公开(公告)号:CN106781278A

    公开(公告)日:2017-05-31

    申请号:CN201710064204.5

    申请日:2017-02-04

    CPC classification number: G08B21/043 G08B21/0446

    Abstract: 本发明公开了一种基于多传感器数据融合的跌倒检测方法及装置,所述跌倒检测方法采用模式识别的方法,将人体行为划分为跌倒模式和ADL模式类,通过基于支持向量机的机器学习方法筛选出作为人体跌倒判断标准的特征向量,根据特征向量和人体运动状态数据联合检测人体跌倒行为。所述跌倒检测装置由压力传感器、加速度传感器、无线发送模块、无线接收模块、微处理器、求救模块等组成。通过所述跌倒检测方法,对跌倒过程中的压力数据、加速度数据进行实时监测与处理,正确识别出人体跌倒行为,并将位置信息发送给家属或看护人员,以便能够及时救治。本发明基于多传感器数据提取特征向量,有效提高了跌倒的识别能力。

    一种基于融合语义聚类的文本自动摘要方法

    公开(公告)号:CN108197111B

    公开(公告)日:2020-12-22

    申请号:CN201810020999.4

    申请日:2018-01-10

    Abstract: 本发明公开了一种基于融合语义聚类的文本自动摘要方法,包括:文本预处理步骤,对原始文档进行预处理,并统计关键词在文本中的词频信息;权重计算步骤,融合局部权重,全局权重和引入相关权重来确定关键词在句子中的贡献度;语义分析步骤,将文本矩阵进行奇异值分解,得到语义分析模型,以此计算每个句子的语义向量;聚类步骤,对计算的句子语义向量在语义空间中通过聚类算法得到K个句子簇;句子选择步骤,在每一个句子簇中计算句子权重,根据排名来挑选前n个句子组成摘要,并去除冗余。本发明简单实用,对文本进行特征表示,融入上下文的语义联系,更充分的显示句子之间和词语之间的共现关系,生成的摘要更能契合文本的主题思想。

    一种基于多传感器数据融合的跌倒检测装置

    公开(公告)号:CN206697008U

    公开(公告)日:2017-12-01

    申请号:CN201720107403.5

    申请日:2017-02-04

    Abstract: 本实用新型公开了一种基于多传感器数据融合的跌倒检测装置,所述跌倒检测装置由压力传感器、加速度传感器、无线发送模块、无线接收模块、微处理器、求救模块等组成。其中,所述跌倒检测方法采用模式识别的方法,将人体行为划分为跌倒模式和ADL模式类,通过基于支持向量机的机器学习方法筛选出作为人体跌倒判断标准的特征向量,根据特征向量和人体运动状态数据联合检测人体跌倒行为。通过所述跌倒检测方法,对跌倒过程中的压力数据、加速度数据进行实时监测与处理,正确识别出人体跌倒行为,并将位置信息发送给家属或看护人员,以便能够及时救治。本实用新型基于多传感器数据提取特征向量,有效提高了跌倒的识别能力。(ESM)同样的发明创造已同日申请发明专利

Patent Agency Ranking