-
公开(公告)号:CN110543846B
公开(公告)日:2021-12-17
申请号:CN201910806159.5
申请日:2019-08-29
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于生成对抗网络的多姿态人脸正面化方法,在训练阶段,首先收集各种姿态的人脸图片作为数据集,然后输入多组同一人的正脸图像和非正脸图像,通过新设计的损失函数,交替训练生成网络和判别网络,直到损失函数的值稳定收敛。在训练完成后的测试阶段,对输入的各种姿态人脸图片,本发明都可以将它们矫正成正脸图像。矫正后的图像不仅清晰,并且保留了原人脸的身份特征,可以用于人脸识别工作。本发明将有效减缓姿态因素对人脸识别造成的负面影响,有利于非限制条件下人脸识别实际应用的发展。
-
公开(公告)号:CN110543846A
公开(公告)日:2019-12-06
申请号:CN201910806159.5
申请日:2019-08-29
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于生成对抗网络的多姿态人脸正面化方法,在训练阶段,首先收集各种姿态的人脸图片作为数据集,然后输入多组同一人的正脸图像和非正脸图像,通过新设计的损失函数,交替训练生成网络和判别网络,直到损失函数的值稳定收敛。在训练完成后的测试阶段,对输入的各种姿态人脸图片,本发明都可以将它们矫正成正脸图像。矫正后的图像不仅清晰,并且保留了原人脸的身份特征,可以用于人脸识别工作。本发明将有效减缓姿态因素对人脸识别造成的负面影响,有利于非限制条件下人脸识别实际应用的发展。
-