基于改进多元宇宙算法优化极限学习机的负荷预测方法

    公开(公告)号:CN114626573B

    公开(公告)日:2024-07-19

    申请号:CN202210103424.5

    申请日:2022-01-27

    Abstract: 本发明公开了基于改进多元宇宙算法优化极限学习机的负荷预测方法。所述方法包括以下步骤:根据极限学习机网络的参数,计算所需优化参数的数量,优化参数的目标为宇宙群;初始化多元宇宙优化算法的参数;采用改进的Tent混沌映射方法初始化宇宙种群;计算/更新宇宙的膨胀率;更新宇宙群;通过虫洞随机传送物质;采用指数形式改进传统多元宇宙优化算法的旅行距离率,更新虫洞存在率;采用精英反向学习的方法改进宇宙;如果达到最大迭代次数或满足精度要求则将优化的权值和阈值赋予极限学习机网络,否则返回更新宇宙群。本发明所提基于改进多元宇宙算法优化极限学习机的负荷预测方法具有更好的稳定性、预测精度和泛化能力。

    基于改进多元宇宙算法优化极限学习机的负荷预测方法

    公开(公告)号:CN114626573A

    公开(公告)日:2022-06-14

    申请号:CN202210103424.5

    申请日:2022-01-27

    Abstract: 本发明公开了基于改进多元宇宙算法优化极限学习机的负荷预测方法。所述方法包括以下步骤:根据极限学习机网络的参数,计算所需优化参数的数量,优化参数的目标为宇宙群;初始化多元宇宙优化算法的参数;采用改进的Tent混沌映射方法初始化宇宙种群;计算/更新宇宙的膨胀率;更新宇宙群;通过虫洞随机传送物质;采用指数形式改进传统多元宇宙优化算法的旅行距离率,更新虫洞存在率;采用精英反向学习的方法改进宇宙;如果达到最大迭代次数或满足精度要求则将优化的权值和阈值赋予极限学习机网络,否则返回更新宇宙群。本发明所提基于改进多元宇宙算法优化极限学习机的负荷预测方法具有更好的稳定性、预测精度和泛化能力。

Patent Agency Ranking