一种大规模客户投诉数据自动分类方法

    公开(公告)号:CN108710651A

    公开(公告)日:2018-10-26

    申请号:CN201810431307.5

    申请日:2018-05-08

    CPC classification number: G06F17/277 G06N3/0454 G06Q30/01

    Abstract: 本发明公开了一种大规模客户投诉数据自动分类方法,包括以下步骤:收集投诉文本数据,并进行预处理;构建第一投诉分类器和第二投诉分类器;根据过滤规则,满足过滤规则分配第一分类标签;不满足过滤规则使用第一投诉分类器进行分类;有第一分类标签的投诉文本数据,没有对应第二投诉分类器,且第一分类标签条目大于第一门限值,则增加一个第二投诉分类器,进行再分类,得到第二分类标签;有对应第二投诉分类器,进行再分类,得到第二分类标签;本发明构建分类器,将投诉文本数据转化为向量,进行分类,通过生成特征词表和TF‑IDF权重值进行聚类和再分类,从而对投诉文本数据进行多层分类,实现快速而准确的对投诉数据文本进行分类。

    一种大规模客户投诉数据自动分类方法

    公开(公告)号:CN108710651B

    公开(公告)日:2022-03-25

    申请号:CN201810431307.5

    申请日:2018-05-08

    Abstract: 本发明公开了一种大规模客户投诉数据自动分类方法,包括以下步骤:收集投诉文本数据,并进行预处理;构建第一投诉分类器和第二投诉分类器;根据过滤规则,满足过滤规则分配第一分类标签;不满足过滤规则使用第一投诉分类器进行分类;有第一分类标签的投诉文本数据,没有对应第二投诉分类器,且第一分类标签条目大于第一门限值,则增加一个第二投诉分类器,进行再分类,得到第二分类标签;有对应第二投诉分类器,进行再分类,得到第二分类标签;本发明构建分类器,将投诉文本数据转化为向量,进行分类,通过生成特征词表和TF‑IDF权重值进行聚类和再分类,从而对投诉文本数据进行多层分类,实现快速而准确的对投诉数据文本进行分类。

    一种基于边缘计算的大数据智能收集方法

    公开(公告)号:CN109831535B

    公开(公告)日:2020-06-19

    申请号:CN201910211055.X

    申请日:2019-03-20

    Abstract: 本发明公开了一种基于边缘计算的大数据智能收集方法,首先,边缘计算节点根据收集到的前端数据特性,确定前端数据是否需要传输到云端服务器,通过多条链路同时发起对服务器的数据传输,服务器在接收到请求后,根据边缘计算节点所在区域的所有边缘计算节点各链路历史传输数据信息作为特征,进行预测,随后服务器将生成的预测表发送给边缘计算节点,边缘计算节点根据预测表和相关策略决定各链路的传输属性并开始传输,在传输完成后服务器会记录本次传输各链路情况,并以此更新该区域内各链路的历史数据。本发明充分利用区域内所有链路传输数据的历史信息预测边缘计算节点各链路的性能,能更合理地为多链路分配传输属性,提高大规模数据收集可靠性。

    一种基于边缘计算的大数据智能收集方法

    公开(公告)号:CN109831535A

    公开(公告)日:2019-05-31

    申请号:CN201910211055.X

    申请日:2019-03-20

    Abstract: 本发明公开了一种基于边缘计算的大数据智能收集方法,首先,边缘计算节点根据收集到的前端数据特性,确定前端数据是否需要传输到云端服务器,通过多条链路同时发起对服务器的数据传输,服务器在接收到请求后,根据边缘计算节点所在区域的所有边缘计算节点各链路历史传输数据信息作为特征,进行预测,随后服务器将生成的预测表发送给边缘计算节点,边缘计算节点根据预测表和相关策略决定各链路的传输属性并开始传输,在传输完成后服务器会记录本次传输各链路情况,并以此更新该区域内各链路的历史数据。本发明充分利用区域内所有链路传输数据的历史信息预测边缘计算节点各链路的性能,能更合理地为多链路分配传输属性,提高大规模数据收集可靠性。

Patent Agency Ranking