一种基于局部-全局存储器U-Net的视频异常检测方法

    公开(公告)号:CN118485946A

    公开(公告)日:2024-08-13

    申请号:CN202410712286.X

    申请日:2024-06-04

    Abstract: 本发明公开了一种基于局部‑全局存储器U‑Net的视频异常检测算法。该算法首先采集正常和异常的视频,并对视频进行预处理以得到训练样本。然后,通过U‑Net的编码器将训练样本进行编码得到特征图,将特征图输入到局部‑全局存储器中进行查询,同时根据查询分数来更新局部和全局存储器。接着,通过U‑Net的解码器将特征图重构为预测帧,并进行自适应误差矫正。最后,通过最小化正常数据的重建损失,将视频序列输入到包含局部‑全局存储器的U‑Net深度神经网络中判断是否发生异常事件。本发明通过局部‑全局存储器保存了正常视频序列的局部和全局信息的正常原型,提高了深度神经网络对异常事件的识别能力,通过自适应误差纠正模块,缓解了存储器的累计误差缺陷,有效提高了异常检测的鲁棒性和稳定性。

    一种针对表格字体的识别方法

    公开(公告)号:CN110363095B

    公开(公告)日:2023-07-04

    申请号:CN201910536393.0

    申请日:2019-06-20

    Abstract: 本发明公开的一种针对表格字体的识别方法,包括以下步骤:获取表格图像,对表格图像进行预处理,包括:图像灰度化、图像去噪、图像倾斜校正;然后进行表格提取,提取表格横线、提取表格竖线、合并表格线段,去除不合格的表格线,得到完整表格;对完整表格进行定位截取,获取表格内容在完整表格中的定位;对定位截取内容进行表格内容提取,获取表格内容;使用识别技术对表格内容进行识别,得到初步识别结果,并分别训练对应的语言库,使用对应的语言库对初步识别结果进行选举,得到最终识别结果;本发明能够对多种格式的表格进行准确定位提取表格线和表格结构,能避免虚线和细线的对表格提取的干扰,能同时对印刷体和手写体进行准确识别。

    一种基于双级级联分割的远红外行人检测方法

    公开(公告)号:CN110706235B

    公开(公告)日:2023-05-23

    申请号:CN201910812839.8

    申请日:2019-08-30

    Abstract: 本发明公开了一种基于双级级联分割的远红外行人检测方法,本发明采用中值滤波和拉普拉斯积分的预处理可以使得图像的轮廓加强;基于图模型的快速图像分割方法可以将图像中具有相近亮度的区域进行合并,从而可以列举出图像中可能存在物体的各局部区域;双阈值法和基于图模型的快速图像分割方法的联用可以使得分割结果更加的准确;基于先验知识层级合并的候选区域列举根据人体成像的特点,对人体区域优先进行合并,提高感兴趣区域的准确率,采用聚合通道特征和高低频红外图像有效的提高了系统的鲁棒性和实时性,二级级联分类器的使用使得分类结果更加的准确。

    一种基于双级级联分割的远红外行人检测方法

    公开(公告)号:CN110706235A

    公开(公告)日:2020-01-17

    申请号:CN201910812839.8

    申请日:2019-08-30

    Abstract: 本发明公开了一种基于双级级联分割的远红外行人检测方法,本发明采用中值滤波和拉普拉斯积分的预处理可以使得图像的轮廓加强;基于图模型的快速图像分割方法可以将图像中具有相近亮度的区域进行合并,从而可以列举出图像中可能存在物体的各局部区域;双阈值法和基于图模型的快速图像分割方法的联用可以使得分割结果更加的准确;基于先验知识层级合并的候选区域列举根据人体成像的特点,对人体区域优先进行合并,提高感兴趣区域的准确率,采用聚合通道特征和高低频红外图像有效的提高了系统的鲁棒性和实时性,二级级联分类器的使用使得分类结果更加的准确。

    一种改进的YOLOv7人体关键点检测方法

    公开(公告)号:CN119478442A

    公开(公告)日:2025-02-18

    申请号:CN202411576560.1

    申请日:2024-11-06

    Abstract: 本发明公开一种改进的YOLOv7人体关键点检测方法,该方法通过LabelImage进行手动标注获得丰富的训练样本;将YOLOv7中原有的MP模块替换为L‑MP模块改进特征提取,新增LiftDown Pool分支和残差连接;在YOLOv7网络的Backbone模块和Head模块之间新增EDH‑Conv模块,利用其输出作为空间权重分布来矫正激活区域,进一步提升了网络对小目标的检测能力;增加改进的RSwin Transformer编码器,用于提升对复杂场景中小目标和重叠目标的检测效果;将损失函数参照Wise‑IoU LOSS改为基于L2损失的改进关键点检测损失,并引入用于调整关键点误差权重的动态聚焦机制,加速模型的收敛。该方法增强了对于复杂场景下的人体关键点检测识别能力,对于体育运动中人体关键点检测识别与计数任务有更强的鲁棒性、准确率和效率。

    一种基于特征解耦的弱监督视频异常检测方法

    公开(公告)号:CN118485947A

    公开(公告)日:2024-08-13

    申请号:CN202410712382.4

    申请日:2024-06-04

    Abstract: 本发明公开了一种基于特征解耦的弱监督视频异常检测方法。该方法首先采集正常和异常视频构建训练数据集,然后利用预训练的视觉‑语言模型获取视频和文本标签的嵌入表示。接着,通过构建局部‑全局时间模块,将视频特征分别从局部和全局的时间依赖性进行建模,以更好地捕获视频中的时间信息。此外,通过特征解耦模块将视频特征和文本标签的共享特征有效地解耦,并将文本标签的共享特征融入到视频特征中,以增强视频特征的表示能力。最后,通过构建分类网络和使用多实例学习方法训练整个神经网络,实现对视频异常事件的准确检测。本发明通过局部‑全局时间模块的设计,有效地捕获了视频数据中的时间依赖,并通过特征解耦模块将视频特征与文本标签特征进行有效地解耦,通过将视频特征和文本标签共享特征的有效融合,提高了视频特征的表示能力。

Patent Agency Ranking