-
公开(公告)号:CN106204586B
公开(公告)日:2019-07-19
申请号:CN201610539182.9
申请日:2016-07-08
Applicant: 华南农业大学
Abstract: 本发明提出了一种基于跟踪的复杂场景下的运动目标检测方法,所述方法包含如下步骤:对输入的视频帧,采用混合高斯模型进行背景建模并进行模型更新,获取初始前景像素点。基于LBP纹理特征对光照的不敏感性,分别将当前前景像素和相对应的背景像素与邻域像素进行二值化比较,实现了背景模型的自适应更新,很好的适应光照的突然变化,获得运动目标。再对运动目标进行跟踪,获取目标的轨迹信息,根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数,以便去除树叶摆动的影响。最后再通过计算变异系数去除大量孤立的小噪声或者伪目标,获取最终运动目标。本发明可有效克服如晃动的树叶、光照突变等复杂背景的影响,具有良好的实时性和适应环境变化的能力。
-
公开(公告)号:CN106650622B
公开(公告)日:2019-06-25
申请号:CN201611018857.1
申请日:2016-11-18
Applicant: 华南农业大学
Abstract: 本发明公开了一种基于混合LBF形状回归模型的挖掘机工作状态识别方法,包括以下步骤:1)训练挖掘机的混合LBF形状回归模型,并使用此模型来预测输入视频帧中挖掘机的形状(即特征点的相对坐标的集合);2)根据这些特征点的坐标以及检测到的挖掘机的长宽比,计算挖掘机工作状态特征描述子;3)使用SVM分类器判断当前挖掘机的工作状态——工作状态或者非工作状态。本发明提出的基于混合LBF形状回归模型的挖掘机工作状态识别方法,可对土地间的挖掘机工作状态进行准确地自动识别,为建筑工地施工现场监测提供了智能化手段。
-
公开(公告)号:CN105354791A
公开(公告)日:2016-02-24
申请号:CN201510520115.8
申请日:2015-08-21
Applicant: 华南农业大学
IPC: G06T1/00
Abstract: 本发明提供一种改进的自适应混合高斯前景检测方法,它首先利用混合高斯模型进行学习,形成初始化混合高斯背景模型;然后,对新输入的视频序列,以每隔N帧进行采样,利用加权时域均值滤波获取一幅图像帧,将其作为混合高斯建模的输入,进行背景模型更新;利用泊松分布自动判断当前帧是否存在背景突变,若不存在,保持正常的采样间隔和学习速率,否则,缩小间隔帧数和加快学习速率,更新背景模型,提取当前的背景帧;最后,利用当前帧与当前背景帧进行差分,通过最大熵方法获取自适应阈值,对获取的阈值进行加权平均,进行前景检测。该方法有效地克服了视频场景中树叶抖动、水波纹等运动干扰,通过周期性的采样减少了帧的运算量,提高了实时性。
-
公开(公告)号:CN105354791B
公开(公告)日:2019-01-11
申请号:CN201510520115.8
申请日:2015-08-21
Applicant: 华南农业大学
IPC: G06T1/00
Abstract: 本发明提供一种改进的自适应混合高斯前景检测方法,它首先利用混合高斯模型进行学习,形成初始化混合高斯背景模型;然后,对新输入的视频序列,以每隔N帧进行采样,利用加权时域均值滤波获取一幅图像帧,将其作为混合高斯建模的输入,进行背景模型更新;利用泊松分布自动判断当前帧是否存在背景突变,若不存在,保持正常的采样间隔和学习速率,否则,缩小间隔帧数和加快学习速率,更新背景模型,提取当前的背景帧;最后,利用当前帧与当前背景帧进行差分,通过最大熵方法获取自适应阈值,对获取的阈值进行加权平均,进行前景检测。该方法有效地克服了视频场景中树叶抖动、水波纹等运动干扰,通过周期性的采样减少了帧的运算量,提高了实时性。
-
公开(公告)号:CN106650622A
公开(公告)日:2017-05-10
申请号:CN201611018857.1
申请日:2016-11-18
Applicant: 华南农业大学
CPC classification number: G06K9/00724 , G06K9/4604 , G06K9/6269 , G06K2009/4666
Abstract: 本发明公开了一种基于混合LBF形状回归模型的挖掘机工作状态识别方法,包括以下步骤:1)训练挖掘机的混合LBF形状回归模型,并使用此模型来预测输入视频帧中挖掘机的形状(即特征点的相对坐标的集合);2)根据这些特征点的坐标以及检测到的挖掘机的长宽比,计算挖掘机工作状态特征描述子;3)使用SVM分类器判断当前挖掘机的工作状态——工作状态或者非工作状态。本发明提出的基于混合LBF形状回归模型的挖掘机工作状态识别方法,可对土地间的挖掘机工作状态进行准确地自动识别,为建筑工地施工现场监测提供了智能化手段。
-
公开(公告)号:CN106204586A
公开(公告)日:2016-12-07
申请号:CN201610539182.9
申请日:2016-07-08
Applicant: 华南农业大学
CPC classification number: G06T7/20 , G06K9/00771 , G06T2207/10016 , G06T2207/30232 , G06T2207/30241
Abstract: 本发明提出了一种基于跟踪的复杂场景下的运动目标检测方法,所述方法包含如下步骤:对输入的视频帧,采用混合高斯模型进行背景建模并进行模型更新,获取初始前景像素点。基于LBP纹理特征对光照的不敏感性,分别将当前前景像素和相对应的背景像素与邻域像素进行二值化比较,实现了背景模型的自适应更新,很好的适应光照的突然变化,获得运动目标。再对运动目标进行跟踪,获取目标的轨迹信息,根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数,以便去除树叶摆动的影响。最后再通过计算变异系数去除大量孤立的小噪声或者伪目标,获取最终运动目标。本发明可有效克服如晃动的树叶、光照突变等复杂背景的影响,具有良好的实时性和适应环境变化的能力。
-
-
-
-
-