-
公开(公告)号:CN105843829B
公开(公告)日:2019-04-26
申请号:CN201510632818.X
申请日:2015-09-30
Applicant: 华北电力大学(保定)
IPC: G06F16/2458
Abstract: 本发明属于面向大数据的数据信任评估的领域,具体涉及一种基于分层模型的大数据可信性度量方法。该发明在传统数据可信分析理论的基础上,通过增加时间因子与惩罚因子等权重参数,计算数据源之间的可信度、数据源的可信度、数据的可信度,动态地构建了层次化的大数据可信分析网络。本发明与现有模型相比,克服了传统数据可信分析方法对于大数据可信计算的不适用性,从更加综合的层面上分析了影响大数据可信度计算的因素,同时,在数据源提供的数据量越多的情况下,越能对所提供数据的可信性度量进行准确分析,较好地满足了大数据的可信需求。
-
公开(公告)号:CN105843829A
公开(公告)日:2016-08-10
申请号:CN201510632818.X
申请日:2015-09-30
Applicant: 华北电力大学(保定)
IPC: G06F17/30
CPC classification number: G06F17/30864
Abstract: 本发明属于面向大数据的数据信任评估的领域,具体涉及一种基于分层模型的大数据可信性度量方法。该发明在传统数据可信分析理论的基础上,通过增加时间因子与惩罚因子等权重参数,计算数据源之间的可信度、数据源的可信度、数据的可信度,动态地构建了层次化的大数据可信分析网络。本发明与现有模型相比,克服了传统数据可信分析方法对于大数据可信计算的不适用性,从更加综合的层面上分析了影响大数据可信度计算的因素,同时,在数据源提供的数据量越多的情况下,越能对所提供数据的可信性度量进行准确分析,较好地满足了大数据的可信需求。
-