-
公开(公告)号:CN106845522B
公开(公告)日:2020-01-31
申请号:CN201611218510.1
申请日:2016-12-26
Applicant: 华北理工大学
IPC: G06K9/62
Abstract: 本发明是涉及一种冶金成球过程中的分类判别系统,该系统主要由聚类分类模块和判别优化模块构成,所述的聚类分类模块主要包含动态聚类单元和SVM分类单元:首先由动态聚类的方式得到一组初始标签,再以此初始标签为基础构建SVM分类模型,所述的判别优化模块主要包括判别单元和Fisher优化单元:判别单元对SVM分类与上一近邻分类两次得到的分类结果进行判别:若两次分类结果一致,则可以直接得到最优的分类方式;若两次分类结果不一致,则Fisher优化单元利用Fisher判别原理优化出基础类别,然后再以基础类别作为初始标签构建SVM分类模型,反复经过SVM分类和Fisher判别优化最终得到一种最优的分类方式,进而完成对球团样本的分类判别筛选工作。
-
公开(公告)号:CN106845522A
公开(公告)日:2017-06-13
申请号:CN201611218510.1
申请日:2016-12-26
Applicant: 华北理工大学
IPC: G06K9/62
Abstract: 本发明是涉及一种冶金成球过程中的分类判别系统,该系统主要由聚类分类模块和判别优化模块构成,所述的聚类分类模块主要包含动态聚类单元和SVM分类单元:首先由动态聚类的方式得到一组初始标签,再以此初始标签为基础构建SVM分类模型,所述的判别优化模块主要包括判别单元和Fisher优化单元:判别单元对SVM分类与上一近邻分类两次得到的分类结果进行判别:若两次分类结果一致,则可以直接得到最优的分类方式;若两次分类结果不一致,则Fisher优化单元利用Fisher判别原理优化出基础类别,然后再以基础类别作为初始标签构建SVM分类模型,反复经过SVM分类和Fisher判别优化最终得到一种最优的分类方式,进而完成对球团样本的分类判别筛选工作。
-