一种基于反向传播的网络风险源头追溯方法

    公开(公告)号:CN105915399A

    公开(公告)日:2016-08-31

    申请号:CN201610482278.6

    申请日:2016-06-27

    Applicant: 华侨大学

    CPC classification number: H04L63/1408 H04L41/12 H04L63/1441

    Abstract: 本发明公开了一种基于反向传播的网络风险源头追溯方法,包括:将网络中愿意被监控的用户设置为监控节点并进行监控;标记所有被感染监控节点,按照监控节点被感染时间差从被感染监控节点处向已提取的网络拓扑上洪泛式广播标记的风险,统计网络拓扑中能同时接收到所有标记风险的节点并将所述节点添加到潜在的风险源集合中;基于潜在的风险源集合和网络节点在风险传播过程中状态转化的动态性,建立网络风险的微观传播模型;基于所述微观传播模型,采用极大似然估计法从所述潜在的风险源集合中定位风险源头。本发明方法能够在保护绝大多数用户隐私的前提下,通过比较小的计算量来得到更为精确的网络风险溯源结果。

    一种基于反向传播的网络风险源头追溯方法

    公开(公告)号:CN105915399B

    公开(公告)日:2019-02-26

    申请号:CN201610482278.6

    申请日:2016-06-27

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于反向传播的网络风险源头追溯方法,包括:将网络中愿意被监控的用户设置为监控节点并进行监控;标记所有被感染监控节点,按照监控节点被感染时间差从被感染监控节点处向已提取的网络拓扑上洪泛式广播标记的风险,统计网络拓扑中能同时接收到所有标记风险的节点并将所述节点添加到潜在的风险源集合中;基于潜在的风险源集合和网络节点在风险传播过程中状态转化的动态性,建立网络风险的微观传播模型;基于所述微观传播模型,采用极大似然估计法从所述潜在的风险源集合中定位风险源头。本发明方法能够在保护绝大多数用户隐私的前提下,通过比较小的计算量来得到更为精确的网络风险溯源结果。

Patent Agency Ranking