-
公开(公告)号:CN117173609A
公开(公告)日:2023-12-05
申请号:CN202311112440.1
申请日:2023-08-31
Applicant: 华侨大学
IPC: G06V20/40 , G06V10/52 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于多尺度特征和通道注意力的无参考屏幕视频质量评价方法及装置,该方法包括:获取视频中采用随机抽样方式抽取的视频帧;构建视频质量评价模型并进行训练,得到经训练的视频质量评价模型,视频质量评价模型包括依次连接的特征提取模块、通道注意力模块、视频时序特征提取模块和平均池化层,特征提取模块用于提取视频帧中的多尺度特征,通道注意力模块用于对多尺度特征进行特征加权,视频时序特征提取模块用于进行特征提取得到时空维度特征,并经过平均池化层计算视频对应的质量分数;将视频帧输入经训练的视频质量评价模型,得到视频的质量分数,具有较好的屏幕视频质量评价效果。
-
公开(公告)号:CN118521876A
公开(公告)日:2024-08-20
申请号:CN202410978491.0
申请日:2024-07-22
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN118521876B
公开(公告)日:2024-10-22
申请号:CN202410978491.0
申请日:2024-07-22
Applicant: 华侨大学 , 杭州电子科技大学 , 厦门亿联网络技术股份有限公司
IPC: G06V10/98 , G06N3/045 , G06N3/0464 , G06V10/40 , G06V10/54 , G06V10/74 , G06V10/776 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于相似性度量的沉浸式视频质量评价方法及装置,涉及视频处理领域,为了尽可能地解决视频中所存在的冗余信息问题,首先采用随机抽样的方式筛选视频帧;然后考虑到卷积神经网络能够很好地模拟人类视觉感知过程充分捕捉从低层次到高层次的视觉信息进而提取纹理和结构特征,采用预训练的ResNet50模型进行特征提取;并考虑到人类的视觉感知系统在观看视频时不仅会受视频内容的影响还会受到记忆时间的影响,利用一个受主观启发的时间池化策略得到纹理和深度视频的质量分数;最后根据人眼视觉的偏好对纹理和深度视频质量评分进行权重调整得到最终的沉浸式视频质量分数。本发明具有较好的沉浸式视频质量评价效果。
-
公开(公告)号:CN118411583B
公开(公告)日:2024-10-22
申请号:CN202410836696.5
申请日:2024-06-26
Applicant: 华侨大学
IPC: G06V10/776 , G06N3/0464 , G06V10/54 , G06V10/74 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于多特征融合的沉浸式视频质量评价方法及装置,涉及视频处理领域,包括:对参考纹理视频序列和失真纹理视频序列采用3D‑LOG滤波器进行特征提取,得到参考纹理特征和失真纹理特征,并计算得到纹理特征相似度,基于纹理特征相似度通过3D‑LOG池化策略得到纹理视频质量分数;根据参考深度视频序列和失真深度视频序列计算得到参考深度特征和失真深度特征;根据参考深度特征和失真深度特征计算得到深度特征相似度并确定梯度权重,根据深度特征相似度和梯度权重计算得到深度视频质量分数;根据纹理视频质量分数和深度视频质量分数计算得到待评价的沉浸式视频的质量分数,解决现有视频评价算法不符合人眼视觉特性和沉浸式视频的特点的问题。
-
公开(公告)号:CN118411583A
公开(公告)日:2024-07-30
申请号:CN202410836696.5
申请日:2024-06-26
Applicant: 华侨大学
IPC: G06V10/776 , G06N3/0464 , G06V10/54 , G06V10/74 , G06V10/80 , G06V10/82 , G06V20/40
Abstract: 本发明公开了一种基于多特征融合的沉浸式视频质量评价方法及装置,涉及视频处理领域,包括:对参考纹理视频序列和失真纹理视频序列采用3D‑LOG滤波器进行特征提取,得到参考纹理特征和失真纹理特征,并计算得到纹理特征相似度,基于纹理特征相似度通过3D‑LOG池化策略得到纹理视频质量分数;根据参考深度视频序列和失真深度视频序列计算得到参考深度特征和失真深度特征;根据参考深度特征和失真深度特征计算得到深度特征相似度并确定梯度权重,根据深度特征相似度和梯度权重计算得到深度视频质量分数;根据纹理视频质量分数和深度视频质量分数计算得到待评价的沉浸式视频的质量分数,解决现有视频评价算法不符合人眼视觉特性和沉浸式视频的特点的问题。
-
-
-
-