一种基于知识图谱关系预测的问题链生成方法及系统

    公开(公告)号:CN114860877B

    公开(公告)日:2024-10-29

    申请号:CN202210464241.6

    申请日:2022-04-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于知识图谱关系预测的问题链生成方法及系统,能够基于问句知识图谱自动生成问题链,包括:基于问句知识图谱构建问题链数据集;对问题链的问句实体进行特征初始化,并通过特征融合方法获得问题链的融合头实体和待测尾实体的初始向量;将融合头实体和待测尾实体的初始向量送入QCG‑KGLP模型的Graph Attention图表示学习模块中,从而获得融合头实体和待测尾实体的表示向量;将融合头实体和待测尾实体的表示向量输入到QCG‑KGLP模型的convKB模块中进行链接预测,从而实现问题链生成。本发明能有效生成适应教学场景的有关联、有梯度的问题链,从而助力教师开展提问教学与提升学生思维能力。

    一种知识图谱的问句生成方法、装置、设备和存储介质

    公开(公告)号:CN114925186A

    公开(公告)日:2022-08-19

    申请号:CN202210566962.8

    申请日:2022-05-24

    Applicant: 华侨大学

    Abstract: 本发明实施例提供一种知识图谱的问句生成方法、装置、设备和存储介质,涉及自然语言处理技术领域。其中,这种问句生成方法包含步骤S1至步骤S7。S1、获取知识图谱。S2、根据知识图谱,通过图变换网络模型,获取各个子图的子图向量。S3、获取问句数据集。S4、根据知识图谱和问句数据集,基于相似度获取各个子图的外部问句。S5、获取五何问题类型参数。S6、根据五何问题类型参数和外部问句,通过Bi LSTM神经网络模型,获取外部增强向量。S7、根据子图向量和外部增强向量,通过指针生成网络模型,获取问句。本发明对生成教学场景中所需的类型多样、语义知识丰富、语言表达自然的问句具有重大的指导和促进作用。

    一种基于知识图谱关系预测的问题链生成方法及系统

    公开(公告)号:CN114860877A

    公开(公告)日:2022-08-05

    申请号:CN202210464241.6

    申请日:2022-04-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于知识图谱关系预测的问题链生成方法及系统,能够基于问句知识图谱自动生成问题链,包括:基于问句知识图谱构建问题链数据集;对问题链的问句实体进行特征初始化,并通过特征融合方法获得问题链的融合头实体和待测尾实体的初始向量;将融合头实体和待测尾实体的初始向量送入QCG‑KGLP模型的Graph Attention图表示学习模块中,从而获得融合头实体和待测尾实体的表示向量;将融合头实体和待测尾实体的表示向量输入到QCG‑KGLP模型的convKB模块中进行链接预测,从而实现问题链生成。本发明能有效生成适应教学场景的有关联、有梯度的问题链,从而助力教师开展提问教学与提升学生思维能力。

    一种知识图谱的问句生成方法、装置、设备和存储介质

    公开(公告)号:CN114925186B

    公开(公告)日:2024-09-10

    申请号:CN202210566962.8

    申请日:2022-05-24

    Applicant: 华侨大学

    Abstract: 本发明实施例提供一种知识图谱的问句生成方法、装置、设备和存储介质,涉及自然语言处理技术领域。其中,这种问句生成方法包含步骤S1至步骤S7。S1、获取知识图谱。S2、根据知识图谱,通过图变换网络模型,获取各个子图的子图向量。S3、获取问句数据集。S4、根据知识图谱和问句数据集,基于相似度获取各个子图的外部问句。S5、获取五何问题类型参数。S6、根据五何问题类型参数和外部问句,通过Bi LSTM神经网络模型,获取外部增强向量。S7、根据子图向量和外部增强向量,通过指针生成网络模型,获取问句。本发明对生成教学场景中所需的类型多样、语义知识丰富、语言表达自然的问句具有重大的指导和促进作用。

Patent Agency Ranking